

EUROPEAN COMMITTEE FOR STANDARDIZATION
C O M I T É E U R O P É E N D E N O R M A LI S A T I O N
EUR OP ÄIS C HES KOM ITEE FÜR NOR M UNG

Management Centre: Avenue Marnix 17, B-1000 Brussels

© 2009 CEN All rights of exploitation in any form and by any means reserved worldwide for CEN national Members.

Ref. No.:CWA 16008-5:2009 E

CEN

WORKSHOP

AGREEMENT

 CWA 16008-5

 August 2009

ICS 35.240.40

English version

 J/eXtensions for Financial Services (J/XFS) for the Java
Platform - Release 2009 - Part 5: Cash Dispenser, Recycler and

ATM Device Class Interface - Programmer's Reference

This CEN Workshop Agreement has been drafted and approved by a Workshop of representatives of interested parties, the constitution of
which is indicated in the foreword of this Workshop Agreement.

The formal process followed by the Workshop in the development of this Workshop Agreement has been endorsed by the National
Members of CEN but neither the National Members of CEN nor the CEN Management Centre can be held accountable for the technical
content of this CEN Workshop Agreement or possible conflicts with standards or legislation.

This CEN Workshop Agreement can in no way be held as being an official standard developed by CEN and its Members.

This CEN Workshop Agreement is publicly available as a reference document from the CEN Members National Standard Bodies.

CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Cyprus, Czech Republic, Denmark, Estonia, Finland,
France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal,
Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland and United Kingdom.

CWA 16008-5:2009 (E)

2

Contents
Contents ... 2

Foreword ... 6

History ... 8

1 Scope ... 9

2 Overview ... 10

3 Classes and Interfaces ... 11

3.1 Class Diagram.. 13
3.2 Class and Interface Details ... 14

3.2.1 Access to properties .. 14
3.3 IJxfsCashDispenserControl .. 15

3.3.1 Summary ... 15
3.3.2 Properties .. 16
3.3.3 Methods ... 17

3.4 IJxfsCashRecyclerControl .. 39
3.4.1 Summary ... 39
3.4.2 Properties .. 39
3.4.3 Methods ... 40

3.5 IJxfsATMControl .. 57
3.5.1 Summary ... 57
3.5.2 Methods ... 58

4 Support Classes .. 64

4.1 Summary .. 64
4.2 Details ... 65

4.2.1 JxfsArt6CashInOrder .. 65
4.2.2 JxfsCalibrateItem .. 67
4.2.3 JxfsCapabilities ... 68
4.2.4 JxfsCashInBanknote .. 77
4.2.5 JxfsCashInBanknoteType .. 78
4.2.6 JxfsCashInOrder .. 79
4.2.7 JxfsCashType .. 80
4.2.8 JxfsCashUnit ... 81
4.2.9 JxfsCurrency ... 82
4.2.10 JxfsCurrencyCode ... 83
4.2.11 JxfsDelay ... 84
4.2.12 JxfsDenomination ... 85
4.2.13 JxfsDenominationItem .. 87
4.2.14 JxfsDispenseOrder .. 88
4.2.15 JxfsDispenseRequest ... 90
4.2.16 JxfsEurArt6Capability ... 91
4.2.17 JxfsLogicalCashUnit ... 92
4.2.18 JxfsMixEntry ... 99
4.2.19 JxfsMixInfo ... 100
4.2.20 JxfsMixItem .. 101
4.2.21 JxfsMixTable... 102
4.2.22 JxfsPhysicalCashUnit .. 103
4.2.23 JxfsRetractArea ... 107
4.2.24 JxfsThreshold .. 109
4.2.25 JxfsCashUnitTestError .. 110
4.2.26 JxfsCDRArt6Categories .. 111

CWA 16008-5:2009 (E)

3

4.2.27 JxfsCDRCashInStatus ... 117
4.2.28 JxfsCDRCashValue ... 119
4.2.29 JxfsCDRCreateSignatureCapabilities ... 120
4.2.30 JxfsCDRCreateSignatureResult .. 122
4.2.31 JxfsCDRReferenceSignature ... 124
4.2.32 JxfsCDRPositionCapabilities .. 126

4.3 Enum Classes ... 129
4.3.1 JxfsCDRPrecisionEnum .. 129
4.3.2 JxfsCDRCashInEnum ... 129
4.3.3 JxfsCDRDeviceOrientationEnum ... 129
4.3.4 JxfsCDRNoteOrientationEnum ... 130
4.3.5 JxfsCDRSupportedEnum .. 131
4.3.6 JxfsCDRMechDesignEnum .. 131
4.3.7 JxfsCDRContentsStatusEnum ... 131
4.3.8 JxfsCDRPositionProcessingProblemsEnum ... 131
4.3.9 JxfsCDRSafeDoorSequenceEnum .. 132
4.3.10 JxfsCDRStatusSelectorEnum .. 132

5 Status Event Classes .. 133

5.1 Summary .. 133
5.2 Details ... 134

5.2.1 JxfsCashTrayStatus ... 134
5.2.2 JxfsCashUnitStatus ... 134
5.2.3 JxfsCDRStatus .. 134
5.2.4 JxfsDeviceStatus ... 135
5.2.5 JxfsDispenseOrderStatus ... 136
5.2.6 JxfsDispenserStatus ... 136
5.2.7 JxfsIntermediateStackerStatus... 136
5.2.8 JxfsSafeDoorStatus ... 136
5.2.9 JxfsShutterStatus ... 137
5.2.10 JxfsTransportStatus ... 137
5.2.11 JxfsVandalismStatus ... 137
5.2.12 JxfsPresentStatus - deprecated .. 137
5.2.13 JxfsExchangeStatus ... 138
5.2.14 JxfsAcceptorStatus .. 138
5.2.15 JxfsCDRResetStatus ... 139
5.2.16 JxfsCDRPositionStatus ... 142

6 Events .. 144

6.1 Intermediate Events .. 144
6.1.1 Intermediate Event Code Summary and Description .. 144
6.1.2 IJxfsCashDispenserControl Intermediate Events .. 144
6.1.3 IJxfsCashRecyclerControl Intermediate Events .. 146
6.1.4 IJxfsATMControl Intermediate Events ... 146
6.1.5 Intermediate Event Details .. 147

6.2 Status Events ... 149
6.2.1 Status Event Code Summary and Description ... 149
6.2.2 Status Event Details .. 150

7 Codes ... 156

7.1 Operation Codes .. 156
7.1.1 IJxfsCashDispenserControl ... 156
7.1.2 IJxfsCashRecyclerControl ... 156
7.1.3 IJxfsATMControl .. 156

7.2 Error Codes Summary and Description.. 157

8 Constants .. 159

8.1 Output position codes ... 159
8.2 Device Type codes ... 159

CWA 16008-5:2009 (E)

4

8.3 Cash Type codes .. 159
8.4 Cash Type variant code .. 159
8.5 CashUnit Kind codes ... 159
8.6 CashUnit Type codes ... 160
8.7 CashUnit Status codes ... 160
8.8 Mix Type codes .. 161
8.9 Mix Table codes ... 161
8.10 Mix Algorithm codes ... 161
8.11 Retract Area codes .. 161
8.12 UVV Delayed Order Queue codes ... 162
8.13 Cash Tray Status codes ... 162
8.14 Device Status codes ... 162
8.15 Dispenser Status codes .. 162
8.16 Intermediate Stacker Status codes ... 162
8.17 Safe Door Status codes .. 163
8.18 Shutter Status codes .. 163
8.19 Transport Status codes ... 163
8.20 Vandalism Status codes .. 163
8.21 Present Status codes - deprecated .. 163
8.22 BIM Status codes ... 163
8.23 JxfsCashInOrder codes... 163
8.24 Exchange Status codes .. 164
8.25 Acceptor status codes .. 164
8.26 Cash-In Status codes ... 164
8.27 Reset Status Codes .. 164

9 Device Service Characteristics ... 165

9.1 MDU - Minimum Dispense Unit .. 165
9.1.1 Definitions ... 165
9.1.2 Example .. 165

9.2 Delayed Dispense ... 166
9.2.1 Introduction ... 166
9.2.2 Delayed dispense in J/XFS .. 166
9.2.3 Delayed dispense protocol .. 167
9.2.4 Re-delaying orders .. 168
9.2.5 Support methods .. 170
9.2.6 Error handling ... 170
9.2.7 State changes of a dispense order during delayed dispense .. 171
9.2.8 Timing ... 172
9.2.9 References ... 172

9.3 European Article 6 regulations support .. 173
9.3.1 Background Information ... 173
9.3.2 Requirements... 174

9.4 Recycler Rollback Procedure ... 175
9.4.1 Normal operating .. 175
9.4.2 Rollback without errors ... 176
9.4.3 Rollback with errors .. 177
9.4.4 CashIn after rollback ... 178
9.4.5 Conclusion .. 179

9.5 Representation of Physical Escrow .. 180
9.5.1 Overview ... 180
9.5.2 Example Recycler ... 180
9.5.3 Physical Cassettes ... 181
9.5.4 Logical Cassettes ... 181

CWA 16008-5:2009 (E)

5

9.6 Handling of null parameters .. 182
9.7 Handling of null return values ... 182
9.8 Multiple Currency Cash-In operations ... 182
9.9 Position Mechanical Design Notes ... 183
9.10 Shutter Handling sequence diagrams .. 184

9.10.1 Implicit Shutter Handling .. 184
9.10.2 Explicit Shutter Handling .. 185
9.10.3 Explicit Shutter Handling, Notes reinserted and never taken .. 185
9.10.4 Explicit Shutter Handling, Notes taken in second presentation .. 187
9.10.5 Explicit Shutter Handling, Handling of two bunches .. 188

CWA 16008-5:2009 (E)

6

Foreword
This CWA contains the specifications that define the J/eXtensions for Financial Services (J/XFS) for the Java TM
Platform, as developed by the J/XFS Forum and endorsed by the CEN J/XFS Workshop. J/XFS provides an API
for Java applications which need to access financial devices. It is hardware independent and, by using 100% pure
Java, also operating system independent.

The CEN J/XFS Workshop gathers suppliers (among others the J/XFS Forum members), service providers as
well as banks and other financial service companies. A list of companies participating in this Workshop and in
support of this CWA is available from the CEN Secretariat , and at
http://www.cen.eu/cenorm/sectors/sectors/isss/activity/jxfs_membership.asp. The specification was agreed upon
by the J/XFS Workshop Meeting of 2009-05-6/9 in Brussels, and the final version was sent to CEN for
publication on 2009-06-12.

The specification is continuously reviewed and commented in the CEN J/XFS Workshop. The information
published in this CWA is furnished for informational purposes only. CEN makes no warranty expressed or
implied, with respect to this document. Updates of the specification will be available from the CEN J/XFS
Workshop public web pages pending their integration in a new version of the CWA (see
http://www.cen.eu/cenorm/sectors/sectors/isss/activity/jxfs_cwas.asp).

The J/XFS specifications are now further developed in the CEN J/XFS Workshop. CEN Workshops are open to
all interested parties offering to contribute. Parties interested in participating and parties wanting to submit
questions and comments for the J/XFS specifications, please contact the J/XFS Workshop Secretariat hosted in
CEN (jxfs-helpdesk@cen.eu).

Questions and comments can also be submitted to the members of the J/XFS Forum through the J/XFS Forum
web-site http://www.jxfs.net.

This CWA is composed of the following parts:
• Part 1: J/eXtensions for Financial Services (J/XFS) for the Java Platform - Release 2009 - Base Architecture

- Programmer's Reference
• Part 2: J/eXtensions for Financial Services (J/XFS) for the Java Platform - Release 2009 - Pin Keypad

Device Class Interface - Programmer's Reference
• Part 3: J/eXtensions for Financial Services (J/XFS) for the Java Platform - Release 2009 - Magnetic Stripe

& Chip Card Device Class Interface - Programmer's Reference
• Part 4: J/eXtensions for Financial Services (J/XFS) for the Java Platform - Release 2009 - Text Input/Output

Device Class Interface - Programmer's Reference
• Part 5: J/eXtensions for Financial Services (J/XFS) for the Java Platform - Release 2009 - Cash Dispenser,

Recycler and ATM Device Class Interface - Programmer's Reference
• Part 6: J/eXtensions for Financial Services (J/XFS) for the Java Platform - Release 2009 - Printer Device

Class Interface - Programmer's Reference
• Part 7: J/eXtensions for Financial Services (J/XFS) for the Java Platform - Release 2009 - Alarm Device

Class Interface - Programmer's Reference
• Part 8: J/eXtensions for Financial Services (J/XFS) for the Java Platform - Release 2009 - Sensors and

Indicators Unit Device Class Interface - Programmer's Reference
• Part 9: J/eXtensions for Financial Services (J/XFS) for the Java Platform - Release 2009 - Depository

Device Class Interface - Programmer's Reference
• Part 10: J/eXtensions for Financial Services (J/XFS) for the Java Platform - Release 2009 - Check

Reader/Scanner Device Class Interface - Programmer's Reference (deprecated in favour of Part 13)
• Part 11: J/eXtensions for Financial Services (J/XFS) for the Java Platform - Camera Device Class Interface -

Programmer's Reference
• Part 12: J/eXtensions for Financial Services (J/XFS) for the Java Platform - Release 2009 - Vendor

Dependant Mode Specification - Programmer's Reference
• Part 13: J/eXtensions for Financial Services (J/XFS) for the Java Platform – Scanner Device Class Interface

- Programmer’s Reference (recommended replacement for Part 10)

Note: Java and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc. The

Java Trademark Guidelines are currently available on the web at http://www.sun.com. All other
trademarks are trademarks of their respective owners.

CWA 16008-5:2009 (E)

7

This CEN Workshop Agreement is publicly available as a reference document from the National Members of
CEN : AENOR, AFNOR, ASRO, BDS, BSI, CSNI, CYS, DIN, DS, ELOT, EVS, IBN, IPQ, IST, LVS, LST,
MSA, MSZT, NEN, NSAI, ON, PKN, SEE, SIS, SIST, SFS, SN, SNV, SUTN and UNI.

Comments or suggestions from the users of the CEN Workshop Agreement are welcome and should be
addressed to the CEN Management Centre.

CWA 16008-5:2009 (E)

8

History

Main differences to CWA 14923-5:2004 are:

o new method to test cash units
o queryCashUnit allowed while in exchange state
o overworked definitions for thresholds
o new way to end exchange without changes
o more precise meaning of dispense and reject cash unit counters
o method to update banknote identification data
o cash-in now allows multiple currencies
o new exchange and acceptance status
o flexible article 6 categorization representation in cash units
o new property to deliver cash-in related information
o additional feature to limit the cashed-in amount
o improved reset information
o Extended denomination handling for cash-out operations
o creation of article 6 reference signatures in a multivendor way
o extended and redesigned position handling
o additional information on how to handle open safe doors

Main differences to CWA 13937-5:2000 are:

o Article 6 added
o class diagram now include interfaces
o intermediateEvent re-introduced
o mixAlgorithm now Read-Only, corresponding statusevent removed
o new parameter for empty-method: JxfsCashUnit
o new cuType-constant in logical cash units: JXFS_C_CDR_LCU_CURRENCY_CASSETTE
o JXFS_S_CDR_ORDER_REMOVED renamed

JXFS_S_CDR_DELAYED_ORDER_REMOVED
o Several constants marked as deprecated
o Mmissing constant codes added
o Reworked class diagram
o Chapter on Denominate removed
o Mixing redesigned again
o New chapter on Physical Escrow
o New chapter on Delayed Dispense
o New chapter on Recycler Rollback
o Document layout modified
o Mixing redesigned
o New constants added
o New chapter on Null value handling

CWA 16008-5:2009 (E)

9

1 Scope

This document describes the Cash Dispenser, Recycler and ATM device classes based on the
basic architecture of J/XFS which is similar to the JavaPOS architecture. It is event driven and
asynchronous.

Three basic levels are defined in JavaPOS. For J/XFS this model is extended by a
communication layer, which provides device communication that allows distribution of
applications and devices within a network. So we have the following layers in J/XFS :

• Application
• Device Control and Manager
• Device Communication
• Device Service

Application developers program against control objects and the Device Manager which reside
in the Device Control Layer. This is the usual interface between applications and J/XFS
Devices. Device Control Objects access the Device Manager to find an associated Device
Service. Device Service Objects provide the functionality to access the real device (i.e. like a
device driver).

During application startup the Device Manager is responsible for locating the desired Device
Service Object and attaching this to the requesting Device Control Object. Location and/or
routing information for the Device Manager reside in a central repository.

To support Cash Dispenser, Recycler and ATM’s the basic Device Control structure is
extended with various properties and methods specific to this device which are described on
the following pages..

CWA 16008-5:2009 (E)

10

2 Overview

Cash Device Support within the J/XFS – API is available for the following device types:

• Dispenser

General dispense devices consist of components that allow the dispensing of cash, either
bills or coins. This interface provides common functionality that is although used by the
following device types.

• Recycler

A Recycler is primarily a Dispenser plus additional components that allow acceptance of
cash as input to the device. This specification for Recyclers is intended for branch-teller
environments and not for use in self-service environments.

• ATM

ATM‘s (Automated Teller Machine) inherit their functional behaviour from Dispenser and
Recycler. They also have functions to support ATM-specific hardware.

CWA 16008-5:2009 (E)

11

3 Classes and Interfaces

The following interfaces and classes are used by the J/XFS Cash Dispenser Device Controls.

Class or
Interface

Name Description Extends or
Implements

Interface IJxfsBaseControl Base interface for all
device controls.
Contains method
declarations specific
to all device controls.

Interface IJxfsCashDispenserControl Base interface for all
cash dispenser
controls. Contains
method declarations
specific to cash
dispenser controls.

Extends:
IJxfsBaseControl

Interface IJxfsCashRecyclerControl Base interface for all
cash recycler
controls. Contains
method declarations
specific to cash
recycler controls.

Extends:
IJxfsBaseControl

Interface IJxfsATMControl Base interface for all
ATM controls.
Contains method
declarations specific
to ATM controls.

Extends:
IJxfsBaseControl

Class JxfsCashDispenser Class for cash
dispenser control.

Implements:
IJxfsCashDispenser
Control,
IJxfsBaseControl

Class JxfsCashRecycler Class for cash
recycler control.

Implements:
IJxfsCashDispenser
Control,
IJxfsCashRecycler
Control,
IJxfsBaseControl

Class JxfsATM Class for ATM
control.

Implements:
IJxfsCashDispenser
Control,
IJxfsCashDispenser
Control,
IJxfsATMControl,
IJxfsBaseControl

CWA 16008-5:2009 (E)

12

The following interfaces are used by the J/XFS Cash Dispenser Device
Services.

Class or
Interface

Name Description Extends or
Implements

Interface IJxfsBaseService Base interface for all
services.

Interface IJxfsCashDispenserService Base interface for all
cash dispenser
services. Contains
method declarations
specific to cash
dispenser devices.

Extends:
IJxfsBaseService

Interface IJxfsCashRecyclerService Base interface for all
cash recycler
services. Contains
method declarations
specific to cash
recycler devices.

Extends:
IJxfsBaseService

Interface IJxfsATMService Base interface for all
ATM services.
Contains method
declarations specific
to ATM devices.

Extends:
IJxfsBaseService

Remark on Device Services

The Device Service interface is common for all device services of a specific type. It is used by
the Device Controls to access the functionality of the device. This interface has to be
implemented by any J/XFS Device Service.
The device type specific Device Service interface is similar to the Device Control interface. All
device specific method calls are extended by an additional parameter (int controlID). This is
always added as the last parameter in every operation.

CWA 16008-5:2009 (E)

13

3.1 Class Diagram

The following class diagram shows the overall layout of the Cash Dispenser, Recycler and
ATM interfaces and classes provided by J/XFS.

CWA 16008-5:2009 (E)

14

3.2 Class and Interface Details

All operation methods return an identificationID. If a method cannot be processed
immediately a JxfsException is thrown.

After processing has taken place, a JxfsOperatonCompleteEvent is generated which
contains
detailed information about the status of the operation, i.e. if it failed or succeeded, and
eventually additional data as a result.

The Constants, Error Codes, Exceptions, Status Codes and Support classes that are used in
the methods are described in special chapters at the end of the documentation.

3.2.1 Access to properties

Please note the following when determining the meaning of a property's Access:
R The property is read only.
W The property is write only.
R/W The property may be read or written.

To read or write a property the application must use the appropriate methods as defined in
the JavaBeans specification.

3.2.1.1 getProperty
Syntax Property getProperty(void) throws JxfsException;
Description Returns the requested property.
Parameter None
Event No additional events are generated.
Exceptions Some possible JxfsException value codes. See section on

JxfsExceptions for other JxfsException value codes.
 JXFS_E_CLOSED

JXFS_E_REMOTE
JXFS_E_UNREGISTERED

3.2.1.2 setProperty
Syntax void setProperty(value) throws JxfsException;
Description Sets the requested property.
Parameter The desired property value.
Event No additional events are generated.
Exceptions Some possible JxfsException value codes. See section on

JxfsExceptions for other JxfsException value codes.
 JXFS_E_CLOSED
 JXFS_E_PARAMETER_INVALID
 JXFS_E_REMOTE
 JXFS_E_UNREGISTERED

CWA 16008-5:2009 (E)

15

3.3 IJxfsCashDispenserControl

3.3.1 Summary

Extends Implements
IJxfsBaseControl

Property Type Access
capabilities JxfsCapabilities R
mixTable java.util.lang.Vector of JxfsMixTable RW
uvv boolean RW
currencies java.util.Vector of JxfsCurrency R

Method Return
getProperty Property
setProperty void
isProperty boolean
denominate identificationID
dispense identificationID
dispenseExec identificationID
startExchange identificationID
endExchange identificationID
endExchange (no
parameters)

identificationID

openSafeDoor identificationID
calibrateCashUnit identificationID
getDateTime identificationID
setDateTime identificationID
queryOrder identificationID
removeOrder identificationID
queryCashUnit identificationID
updateCashUnit identificationID
reset identificationID
testCashUnits identificationID
queryDenominations identificationID
updateDenominations identificationID

CWA 16008-5:2009 (E)

16

3.3.2 Properties

3.3.2.1 capabilities (R)

Type JxfsCapabilities
Remarks Used to keep complete information about all device Capabilities.

3.3.2.2 mixTables (RW)

Type java.util.Vector of JxfsMixTable
Remarks Used to keep complete information about all MixTables.
Events If the value of this property changes a JxfsStatusEvent is sent to all

registered listeners with following data:
 Field Value
 status JXFS_S_CDR_MIXTABLE_CHANGED
 details java.util.Vector of JxfsMixTable objects
 Updated property mixTables.

3.3.2.3 uvv (RW)

Type boolean
Remarks UVV is a german abreviation for „Unfallverhütungsvorschrift Kassen“.

This is a regulation which describes the processing of dispensing cash
according to german security rules.
Defines the current mode for dispense operations. If set to true, delayed
dispense (according to german security rules) is activated.

3.3.2.4 currencies (R)

Type java.util.Vector of JxfsCurrency
Remarks Contains a vector of supported currencies.

CWA 16008-5:2009 (E)

17

3.3.3 Methods

Following methods are specific to CashDispenser devices.

3.3.3.1 denominate

Syntax identificationID denominate(int mixNumber, JxfsDenomination
denomination, JxfsCurrency currency) throws JxfsException;

Remarks Denominates a specified amount of money. Cash can be retrieved from

different sources:
• cash dispenser
• coin dispenser
• teller’s cash box
The configuration specifies the sources to be used in the
JxfsDenomination. For a Dispenser all three can be used.
If the device used is an ATM, only the cash dispenser and, optionally,
the coin dispenser can be available.

The denominate() method calculates the denomination according to the
following sequence:

1. The denomination.cashBox property is subtracted from the
denomination.amount property and stored in the restAmount
variable.

2. The restAmount variable is decreased by the amount denoted
by the initial denomination.

3. The returnDenomination variable is initialized with the
content of the initial denomination.

case A: mixNumber parameter specifies a denomination
(JXFS_C_CDR_MIX_DENOM)

4a the items, amount, and currency passed as input parameters

are all checked for consistency. If the items match the amount
and currency, and the values requested are dispensable the
same JxfsDenomination object is returned as
returnDenomination (no denomination is performed by the
device service in this case).

case B: mixNumber parameter specifies an algorithm

4b The restAmount is denominated according to the specified

algorithm and the result is added to the returnDenomination
variable.

case C: mixNumber parameter specifies a mix table

4c The restAmount is denominated according to the specified

table as described below and the result is added to the
returnDenomination variable.

4c.1 if mixInfo.mixType property of the table is

JXFS_C_CDR_MIX_DENOM an empty
denomination is returned.

4c.2 if mixInfo.mixType property of the table is

JXFS_C_CDR_MIX_TABLE, among all items in the
mix table the item with the largest amount property
which is still less than or equal to the specified amount
is selected and used for the returned denomination.

CWA 16008-5:2009 (E)

18

Example: if the table contains items for the amounts of
100, 200, 300 and 400 EUR and the requested amount
is 320 EUR, the item for the amount of 300 EUR will
be selected.

4c.3 if mixInfo.mixType property of the table is

JXFS_C_CDR_MIX_ALGORITHM, the
returnDenomination variable is first determined as
already described in the case A. Then, the remaining
amount is denominated according to the algorithm
specified by the mixInfo.mixAlgorithmType property
of the table and added to the returnDenomination.

5. The JxfsDenomination object returned in the
JxfsOperationCompleteEvent is initialized in the following
way:
- The amount property is set to the amount property of

the denomination parameter.
- The items property is set to the returnDenomination

variable.
- The cashBox property is set to the difference between

the amount property and the amount specified by the
items property.

Denominating in the dispense() method follows the same rules. The
mixNumber, denomination and currency input parameters are bundled
together in the JxfsDispenseRequest object.

Please, note that if mixNumber specifies a table which contains assets
which are not defined in the denomination parameter, the operation will
fail with JXFS_E_CDR_INVALID_DENOMINATION.

Parameter Type Name Description

 int mixNumber Identifies the mix table,

algorithm, or
denomination verification
to use for denomination

 JxfsDenomination denomination Specifies the amount to
denominate or
denomination to verify. It
contains the initial
(minimal) amounts in the
cash box. As already
stated in CWA
(4.2.12.3.1): the items
included here define the
asset used for denominate,
so units included here
define the final
denomination set with
each item indicating the
initial (minimal) number
of bills/coins which
should contribute to the
final denomination.

 JxfsCurrency currency Specifies the Currency to
use.

CWA 16008-5:2009 (E)

19

Events Events, which can be generated by this method.

 JxfsOperationCompleteEvent

 When a denominate operation is completed, this

JxfsOperationCompleteEvent is sent to all registered listeners with
following data:

 Field Value
 operationID JXFS_O_CDR_DENOMINATE
 identificationID identificationID returned by method.
 result Common or device dependent error code. (See

section on Error Codes Summary and
Description).

 data JxfsDenomination object
 Specifies the calculated Denomination.

CWA 16008-5:2009 (E)

20

3.3.3.2 dispense

Syntax identificationID dispense(JxfsDispenseRequest dispenseRequest)
throws JxfsException;

Remarks Dispenses the amount of money which is specified by the

JxfsDenomination. The cash is dispensed at the side specified with the
position property.

Parameter Type Name Description
 JxfsDispenseRequest dispenseRequest Contains all

parameter used for
dispensing cash.

Events Events, which can be generated by this method.

 JxfsOperationCompleteEvent

 When a dispense operation is completed, this

JxfsOperationCompleteEvent is sent to all registered listeners with
following data:

 Field Value
 operationID JXFS_O_CDR_DISPENSE
 identificationID identificationID returned by method.
 result Common or device dependent error code. (See

section on Error Codes Summary and
Description).

 data JxfsDispenseOrder object
 Amongst other information, this carries a

JxfsDenomination property. If a successful
immediate dispense, or an error occurs, then
this will return details of the actual cash
dispensed. If the dispense is delayed
(JXFS_E_CDR_DELAYED_DISPENSE result
is returned by the event), then this will return
details of the cash that will be dispensed
following a successful call for the dispense
order to the dispenseExec method.
If the dispense is delayed, then the when
property of the JxfsDispenseOrder will be set to
the time from which the delay is started, and the
delay property will give the total delay time in
ms.
When the operation is canceled during a partial
dispense, the returned JxfsDispenseOrder
contains the total amount of cash dispensed
before cancel occurred.

see section 9.2
for more details

CWA 16008-5:2009 (E)

21

 JxfsIntermediateEvent

 JXFS_I_CDR_PARTIAL_DISPENSE

 JxfsStatusEvent

 JXFS_S_CDR_CASH_AVAILABLE
 JXFS_S_CDR_CASH_TAKEN
 JXFS_S_CDR_CASH_TRAY_CHANGED
 JXFS_S_CDR_CASHUNIT_CHANGED
 JXFS_S_CDR_CASHUNIT_THRESHOLD
 JXFS_S_CDR_DELAYED_DISPENSE
 JXFS_S_CDR_DELAYED_ORDER_CHANGED
 JXFS_S_CDR_DEVICE_STATUS_CHANGED
 JXFS_S_CDR_DISPENSER_STATUS_CHANGED
 JXFS_S_CDR_INTERMEDIATE_STACKER_CHANGED
 JXFS_S_CDR_TRANSPORT_CHANGED
 JXFS_S_CDR_POSITION_CHANGED
 JXFS_S_CDR_RESET_STATUS_CHANGED

CWA 16008-5:2009 (E)

22

3.3.3.3 dispenseExec

Syntax identificationID dispenseExec(JxfsDispenseOrder dispenseOrder)
throws JxfsException;

Remarks Accepts an order, which should be ready for dispense.

Parameter Type Name Description
 JxfsDispenseOrder dispenseOrder Contains all

parameter used for
dispensing cash.

Events Events, which can be generated by this method.

 JxfsOperationCompleteEvent

 When a dispenseExec operation is completed, this

JxfsOperationCompleteEvent is sent to all registered listeners with
following data:

 Field Value
 operationID JXFS_O_CDR_DISPENSE_EXEC
 identificationID identificationID returned by method.
 result Common or device dependent error code. (See

section on Error Codes Summary and
Description).

 data JxfsDispenseOrder object
 Amongst other information, this carries a

JxfsDenomination property. If a successful
dispense, or an error occurs, then this will return
details of the actual cash dispensed.
When the operation is canceled during a partial
dispense, the returned JxfsDispenseOrder
contains the total amount of cash dispensed
before cancel occurred.

see section 9.2
for more details

 JxfsIntermediateEvent

 JXFS_I_CDR_PARTIAL_DISPENSE

 JxfsStatusEvent

 JXFS_S_CDR_CASH_AVAILABLE
 JXFS_S_CDR_CASH_TAKEN
 JXFS_S_CDR_CASH_TRAY_CHANGED
 JXFS_S_CDR_CASHUNIT_CHANGED
 JXFS_S_CDR_CASHUNIT_THRESHOLD
 JXFS_S_CDR_DELAYED_ORDER_CHANGED
 JXFS_S_CDR_DELAYED_ORDER_REMOVED
 JXFS_S_CDR_DEVICE_STATUS_CHANGED
 JXFS_S_CDR_DISPENSER_STATUS_CHANGED
 JXFS_S_CDR_INTERMEDIATE_STACKER_CHANGED
 JXFS_S_CDR_TRANSPORT_CHANGED
 JXFS_S_CDR_POSITION_CHANGED
 JXFS_S_CDR_RESET_STATUS_CHANGED

CWA 16008-5:2009 (E)

23

3.3.3.4 startExchange

Syntax identificationID startExchange(java.util.Vector units) throws
JxfsException;

Remarks Used to start the exchange of cash units. No other method calls than

endExchange, close, openSafeDoor, queryCashUnit or a getProperty
may be performed.

Parameter Type Name Description
 java.util.Vector of

Integer
units Vector of Integer

which specify the
logical cash units to
exchange.

Events Events, which can be generated by this method.

 JxfsOperationCompleteEvent

 When a startExchange operation is completed, this

JxfsOperationCompleteEvent is sent to all registered listeners with
following data:

 Field Value
 operationID JXFS_O_CDR_START_EXCHANGE
 identificationID identificationID returned by method.
 result Common or device dependent error code. (See

section on Error Codes Summary and
Description).

 data JxfsCashUnit object

 JxfsStatusEvent

 JXFS_S_CDR_DEVICE_STATUS_CHANGED
 JXFS_S_CDR_RESET_STATUS_CHANGED

CWA 16008-5:2009 (E)

24

3.3.3.5 endExchange

Syntax identificationID endExchange(JxfsCashUnit cashUnit) throws
JxfsException;

Remarks On successful completion this method establishes the cash unit

configuration, updates the devices associated JxfsCDRStatus to reflect
the current status of the device and ends the exchange state.

Depending on the capabilities of the attached device, the device service
will:
1) validate the supplied JxfsCashUnit configuration to ensure that it is

consistent
2) validate the supplied JxfsCashUnit configuration against the

hardware configuration reported by the device
3) assign the supplied JxfsCashUnit configuration, if valid, to the

device service
4) perform any hardware tests necessary to determine the status of the

hardware and/or to allow the cash units to be accessed by the device
service. If a hardware error occurs, the operation will complete
successfully (i.e. JXFS_RC_SUCCESSFUL will be returned). In this
case, the JxfsCDRStatus object returned by the
IJxfsBaseControl.getStatus() method will contain the current status
of the hardware component causing the failure.

5) update the devices JxfsCDRStatus with the current status of the
device

If invalid data is encountered, during the validation tests performed in
steps 1) and 2), which can be replaced by the device service using know
hardware/software values, the supplied JxfsCashUnit will be corrected
by the device service and returned in a JxfsOperationCompleteEvent
with result JXFS_E_CDR_CASH_UNIT_ERROR.

If this method does not complete successfully the device remains in an
exchange state. It is the responsibility of the operator to correct any
problem in order to allow the exchange state to be exited successfully.

On completion the status of the device should be queried, using the
IjxfsBaseControl.getStatus() method, in order to determine whether the
device is operational or not.

If the device service is capable of identifying the available physical cash
units, the situation may occur whereby physical units are identified
which have no corresponding JxfsCashUnit configuration. In this case,
the device service will determine as much information as possible from
the unconfigured cash unit(s) before appended new cash unit
configurations to the list of cash unit configurations given in the
supplied JxfsCashUnit. Depending on the amount of information which
the device service was able to determine these new units may be
immediately usable or not. If they are not immediately usable the
JxfsLogicalCashUnit.status and JxfsPhysicalCashUnit.status properties
of the new cash unit configurations will be set to
JXFS_C_CDR_LCU_NO_VALUE signaling that additional
configuration is required before the units can be used. The updated
configuration will be established as the current cash unit configuration
and returned through the JxfsOperationCompleteEvent.data property.
The presence of unconfigured cash units will not cause the operation to
fail.

CWA 16008-5:2009 (E)

25

Parameter Type Name Description
 JxfsCashUnit cashUnit Update information

for the cash units.

Events Events, which can be generated by this method.

 JxfsOperationCompleteEvent

 When an endExchange operation is completed, this

JxfsOperationCompleteEvent is sent to all registered listeners with
following data:

 Field Value
 operationID JXFS_O_CDR_END_EXCHANGE
 identificationID The corresponding ID
 result Common or device dependent error code. (See

section on Error Codes Summary and
Description).

 data JxfsCashUnit object
 Updated cash unit configuration. This

information is always returned, regardless of
whether the method completes successfully or
not.

 JxfsStatusEvent

 JXFS_S_CDR_CASHUNIT_CHANGED
 JXFS_S_CDR_CASHUNIT_CONFIGURATION_CHANGED
 JXFS_S_CDR_CASHUNIT_THRESHOLD
 JXFS_S_CDR_DEVICE_STATUS_CHANGED
 JXFS_S_CDR_DISPENSER_STATUS_CHANGED
 JXFS_S_CDR_RESET_STATUS_CHANGED

CWA 16008-5:2009 (E)

26

3.3.3.6 endExchange

Syntax identificationID endExchange() throws JxfsException;

Remarks Puts dispenser back into an operational state without modifying the

latest known cash unit. It will now accept regular method calls.

Parameter none

Events Events, which can be generated by this method.

 JxfsOperationCompleteEvent

 When an endExchange operation is completed, this

JxfsOperationCompleteEvent is sent to all registered listeners with
following data:

 Field Value
 operationID JXFS_O_CDR_END_EXCHANGE
 identificationID identificationID returned by method.
 result Common or device dependent error code. (See

section on Error Codes Summary and
Description).

 data JxfsCashUnit object
 Actual cash units.

 JxfsStatusEvent

 JXFS_S_CDR_CASHUNIT_CHANGED
 JXFS_S_CDR_CASHUNIT_CONFIGURATION_CHANGED
 JXFS_S_CDR_CASHUNIT_THRESHOLD
 JXFS_S_CDR_DEVICE_STATUS_CHANGED
 JXFS_S_CDR_DISPENSER_STATUS_CHANGED
 JXFS_S_CDR_RESET_STATUS_CHANGED

CWA 16008-5:2009 (E)

27

3.3.3.7 openSafeDoor

Syntax identificationID openSafeDoor() throws JxfsException

Remarks This command controls the time lock for the safe door. It sends the

currently configured value for the safe door timer to the device. This
configuration parameter is vendor dependent.

Events Events, which can be generated by this method.

 JxfsOperationCompleteEvent

 When an openSafeDoor operation is completed, this

JxfsOperationCompleteEvent is sent to all registered listeners with
following data:

 Field Value
 operationID JXFS_O_CDR_OPEN_SAFE_DOOR
 identificationID identificationID returned by method.
 result Common or device dependent error code. (See

section on Error Codes Summary and
Description).

 data none

 JxfsStatusEvent

 JXFS_S_CDR_DEVICE_STATUS_CHANGED
 JXFS_S_CDR_SAFE_DOOR_CHANGED
 JXFS_S_CDR_RESET_STATUS_CHANGED

CWA 16008-5:2009 (E)

28

3.3.3.8 calibrateCashUnit

Syntax identificationID calibrateCashUnit(JxfsCalibrateItem calibrateItem)
throws JxfsException;

Remarks This command is used to initialize the reference value of a cash unit. It

will action a vendor dependent sequence of hardware events which will
calibrate the physical cash unit. This is necessary if a new type of bank
note is put into the cash unit. By this command the cash unit gets the
new measures of the bank notes.

Parameter Type Name Description
 JxfsCalibrateItem calibrateItem CalibrateItem to use.

Events Events, which can be generated by this method.

 JxfsOperationCompleteEvent

 When a calibrateCashUnit operation is completed, this

JxfsOperationCompleteEvent is sent to all registered listeners with
following data:

 Field Value
 operationID JXFS_O_CDR_CALIBRATE_CASH_UNIT
 identificationID identificationID returned by method.
 result Common or device dependent error code. (See

section on Error Codes Summary and
Description).

 data java.util.Vector object
 Updated CalibrateItems.

 JxfsStatusEvent

 JXFS_S_CDR_CASH_AVAILABLE
 JXFS_S_CDR_CASH_TAKEN
 JXFS_S_CDR_CASH_TRAY_CHANGED
 JXFS_S_CDR_CASHUNIT_CHANGED
 JXFS_S_CDR_CASHUNIT_THRESHOLD
 JXFS_S_CDR_DEVICE_STATUS_CHANGED
 JXFS_S_CDR_TRANSPORT_CHANGED
 JXFS_S_CDR_POSITION_CHANGED
 JXFS_S_CDR_RESET_STATUS_CHANGED

CWA 16008-5:2009 (E)

29

3.3.3.9 getDateTime

Syntax identificationID getDateTime() throws JxfsException;

Remarks Get device date and time.

Events Events, which can be generated by this method.

 JxfsOperationCompleteEvent

 When a getDateTime operation is completed, this

JxfsOperationCompleteEvent is sent to all registered listeners with
following data:

 Field Value
 operationID JXFS_O_CDR_GET_DATE_TIME
 identificationID identificationID returned by method.
 result Common or device dependent error code. (See

section on Error Codes Summary and
Description).

 Data java.util.Date object
 Current date and time of device.

 JxfsStatusEvent

 JXFS_S_CDR_DEVICE_STATUS_CHANGED
 JXFS_S_CDR_RESET_STATUS_CHANGED

CWA 16008-5:2009 (E)

30

3.3.3.10 setDateTime

Syntax identificationID setDateTime(Date date) throws JxfsException;

Remarks Set device date and time. More and more devices are equipped with

computer systems that have their own real time clock. The usage of this
command is to synchronize this internal device clock with other
systems.

Parameter Type Name Description
 java.util.Date

Events Events, which can be generated by this method.

 JxfsOperationCompleteEvent

 When a setDateTime operation is completed, this

JxfsOperationCompleteEvent is sent to all registered listeners with
following data:

 Field Value
 operationID JXFS_O_CDR_SET_DATE_TIME
 identificationID identificationID returned by method.
 result Common or device dependent error code. (See

section on Error Codes Summary and
Description).

 data java.util.Date object
 Previous date and time of device.

 JxfsStatusEvent

 JXFS_S_CDR_DATE_TIME_CHANGED
 JXFS_S_CDR_DEVICE_STATUS_CHANGED
 JXFS_S_CDR_RESET_STATUS_CHANGED

CWA 16008-5:2009 (E)

31

3.3.3.11 queryOrder

Syntax identificationID queryOrder(int orderType) throws JxfsException;

Remarks This method is used to retrieve four different lists of dispense orders.

Parameter Type Name Description
 int orderType specifies the list to

retrieve.

 Value Description
 JXFS_C_CDR_DO_DISPENSABLE Orders ready for

processing.
 JXFS_C_CDR_DO_DELAYED All orders in delay

queue.
 JXFS_C_CDR_DO_LAQ All orders in Large

Amount Queue.
 JXFS_C_CDR_DO_ALL All orders in all

queues.

Events Events, which can be generated by this method.

 JxfsOperationCompleteEvent

 When a queryOrder operation is completed, this

JxfsOperationCompleteEvent is sent to all registered listeners with
following data:

 Field Value
 operationID JXFS_O_CDR_QUERY_ORDER
 identificationID identificationID returned by method.
 result Common or device dependent error code. (See

section on Error Codes Summary and
Description).

 data java.util.Vector of JxfsDispenseOrder objects
 Vector of selected Orders.

 JxfsStatusEvent

 JXFS_S_CDR_DEVICE_STATUS_CHANGED
 JXFS_S_CDR_RESET_STATUS_CHANGED

CWA 16008-5:2009 (E)

32

3.3.3.12 removeOrder

Syntax identificationID removeOrder(JxfsDispenseOrder dispenseOrder)
throws JxfsException;

Remarks This method is used to remove a dispense order from the lists of

dispense orders.

Parameter Type Name Description
 JxfsDispenseOrder dispenseOrder specifies the

dispenseOrder to
remove from one of
the queues: LAQ,
Dispensable or
Delayed.

Events Events, which can be generated by this method.

 JxfsOperationCompleteEvent

 When a removeOrder operation is completed, this

JxfsOperationCompleteEvent is sent to all registered listeners with
following data:

 Field Value
 operationID JXFS_O_CDR_REMOVE_ORDER
 identificationID identificationID returned by method.
 result Common or device dependent error code. (See

section on Error Codes Summary and
Description).

 data JxfsDispenseOrder object
 Removed Order.

 JxfsStatusEvent

 JXFS_S_CDR_DELAYED_ORDER_REMOVED
 JXFS_S_CDR_DEVICE_STATUS_CHANGED
 JXFS_S_CDR_RESET_STATUS_CHANGED

CWA 16008-5:2009 (E)

33

3.3.3.13 queryCashUnit

Syntax identificationID queryCashUnit() throws JxfsException;

Remarks Retrieve the current cash units.

Inside an exchange sequence the device service reports the last known
cash unit before starting the exchange sequence unless the structure is
updated by the device service according to actual hardware knowledge.

Events Events, which can be generated by this method.

 JxfsOperationCompleteEvent

 When a queryCashUnit operation is completed, this

JxfsOperationCompleteEvent is sent to all registered listeners with
following data:

 Field Value
 operationID JXFS_O_CDR_QUERY_CASHUNIT
 identificationID identificationID returned by method.
 result Common or device dependent error code. (See

section on Error Codes Summary and
Description).

 data JxfsCashUnit object
 Current cash units.

 JxfsStatusEvent

 JXFS_S_CDR_DEVICE_STATUS_CHANGED
 JXFS_S_CDR_RESET_STATUS_CHANGED

CWA 16008-5:2009 (E)

34

3.3.3.14 updateCashUnit

Syntax identificationID updateCashUnit(JxfsCashUnit cashUnit) throws
JxfsException;

Remarks Replace current cash units. When calling this method it is important that

the application fills in the whole structure including all
JxfsLogicalCashUnits and JxfsPhysicalCashUnits.

Parameter Type Name Description
 JxfsCashUnit cashUnit unit of device.

Events Events, which can be generated by this method.

 JxfsOperationCompleteEvent

 When an updateCashUnit operation is completed, this

JxfsOperationCompleteEvent is sent to all registered listeners with
following data:

 Field Value
 operationID JXFS_O_CDR_UPDATE_CASHUNIT
 identificationID identificationID returned by method.
 result Common or device dependent error code. (See

section on Error Codes Summary and
Description).

 data JxfsCashUnit object
 Current cash units.

 JxfsStatusEvent

 JXFS_S_CDR_CASHUNIT_CHANGED
 JXFS_S_CDR_CASHUNIT_CONFIGURATION_CHANGED
 JXFS_S_CDR_CASHUNIT_THRESHOLD
 JXFS_S_CDR_DEVICE_STATUS_CHANGED
 JXFS_S_CDR_RESET_STATUS_CHANGED

CWA 16008-5:2009 (E)

35

3.3.3.15 reset

Syntax identificationID reset() throws JxfsException;

Remarks This method is used to reset the device and put it into a defined

operational state.

Events Events, which can be generated by this method.

 JxfsOperationCompleteEvent

 When a reset operation is completed , this JxfsOperationCompleteEvent

is sent to all registered listeners with following data:

 Field Value
 operationID JXFS_O_CDR_RESET
 identificationID identificationID returned by method.
 result Common or device dependent error code. (See

section on Error Codes Summary and
Description).

 data none

 JxfsIntermediateEvent

 JXFS_I_CDR_INPUT_EURART6

This event may only be generated if these two conditions are met:
trustedUser is false and reset is performed within a cash acceptance
transaction (between cashInStart and cashInEnd).

 JxfsStatusEvent

 JXFS_S_CDR_CASH_AVAILABLE
 JXFS_S_CDR_CASH_TAKEN
 JXFS_S_CDR_CASH_TRAY_CHANGED
 JXFS_S_CDR_CASHUNIT_CHANGED
 JXFS_S_CDR_CASHUNIT_CONFIGURATION_CHANGED
 JXFS_S_CDR_CASHUNIT_THRESHOLD
 JXFS_S_CDR_DEVICE_STATUS_CHANGED
 JXFS_S_CDR_DISPENSER_STATUS_CHANGED
 JXFS_S_CDR_INTERMEDIATE_STACKER_CHANGED
 JXFS_S_CDR_SAFE_DOOR_CHANGED
 JXFS_S_CDR_TRANSPORT_CHANGED
 JXFS_S_CDR_POSITION_CHANGED
 JXFS_S_CDR_RESET_STATUS_CHANGED

CWA 16008-5:2009 (E)

36

3.3.3.16 testCashUnits

Syntax identificationID testCashUnits (int position) throws JxfsException

Remarks This method can be used to test cash units following replenishment. All

physical cash units are tested if the dispenser state is
JXFS_C_CDR_DIS_OK or JXFS_S_CDR_DIS_CU_STATE and the
cash unit is not application locked. The command completes with a
JXFS_RC_SUCCESSFUL JxfsOperationComplete event if the Device
Service successfully manages to test all of the Cash Units which are low
or ok regardless of the outcome of the test. This is the case if all the cash
units could be tested and a dispense was possible from at least one of the
cash units. A JXFS_E_CDR_CASH_UNIT_ERROR Operation
Complete event is sent if all the cash unit tests failed. The operation
performed to test the cash units is vendor dependent. Items may be
dispensed or transported into the reject bin or a recycler bin as a result of
this command. This command cannot be used to test cash units that have
been application locked.
If UVV is activated, this method will behave according to the UVV
legislation.

Parameter Type Name Description

 int position Specifies the output

position to use for
presenting money.

Events Events, which can be generated by this method.

 JxfsOperationCompleteEvent

 When a testCashUnits operation is completed, this

JxfsOperationCompleteEvent is sent to all registered listeners with
following data:

 Field Value
 operationID JXFS_O_CDR_TESTCASHUNITS
 identificationID identificationID returned by method.
 Result Common or device dependent error code. (See

section on Error Codes Summary and
Description).

 Data java.util.Vector of JxfsCashUnitTestError
 Specifies the cash units which failed. Empty if

none failed.

3.3.3.17 queryDenominations

Syntax identificationID queryDenominations() throws JxfsException;

Remarks This method is used to query information about denominations

supported by the device. In the JxfsOperationCompleteEvent event, it
returns a vector of denominations with their current settings. Each
element of the returned vector is an object of type
JxfsDenominationInfo, which contains information on the settings of the
validation unit for the denomination.

CWA 16008-5:2009 (E)

37

Events Events, which can be generated by this method.

 JxfsOperationCompleteEvent

 When an operation is completed, this JxfsOperationCompleteEvent is

sent to all registered listeners with the following data:

 Field Value
 operationID JXFS_O_CDR_QUERY_DENOMINATIONS
 identificationID identificationID returned by method.
 Result Common or device dependent error code. (See

section on Error Codes Summary and
Description).

 Data java.util.Vector object
 A vector of JxfsDenominationInfo, one for each

different denomination supported by the device.

CWA 16008-5:2009 (E)

38

3.3.3.18 updateDenominations

Syntax identificationID updateDenominations(java.util.Vector denomInfo)
throws JxfsException;

Remarks This method is used to update the settings for a list of denominations.

For each JxfsDenominationInfo element of the vector, the application can
update its validation settings

Parameter Type Name Description
 java.util.Vector denomInfo A vector of JxfsDenominationInfo

objects. This object should be a
modified version of the one
obtained from the
queryDenominations call.

Events Events, which can be generated by this method.

 JxfsOperationCompleteEvent

 When an updateDenominations operation is completed, this

JxfsOperationCompleteEvent is sent to all registered listeners with the
following data:

 Field Value
 operationID JXFS_O_CDR_UPDATE_DENOMINATIONS
 identificationID identificationID returned by method.
 Result Common or device dependent error code. (See

section on Error Codes Summary and
Description).

 Data java.util.Vector object
 A vector of JxfsDenominationInfo objects. This

object contains the list of updated
denominations.

CWA 16008-5:2009 (E)

39

3.4 IJxfsCashRecyclerControl

3.4.1 Summary

Extends Implements
IjxfsBaseControl

Property Type Access
BIMStatus int R
cashInInfo JxfsCDRCashInStatus R

Method Return
cashInStart identificationID
cashInStart identificationID
cashIn identificationID
cashInEnd identificationID
cashInRollback identificationID
empty identificationID
querySignatures identificationID
updateBIMDataSets identificationID
createSignature identificationID

3.4.2 Properties

3.4.2.1 BIMStatus

Type int
Remarks Checks the BIM data in the device against the one found in the

repository and return
 OK_NEWER BIM data in repository is newer than BIM data in

device. Update possible.
 OK_OLDER BIM data in repository is older (!) than BIM data in

device. Update possible (but not recommended).
 OK_EQUAL BIM data in the repository is equal to the BIM data

in the device. Update possible.
 OK_OTHER BIM data in repository has different currencies, but

an update is possible.
 NO_SOURCE Update not possible, no BIM data found in

repository.
 NO_MATCH Update not possible, firmware in repository not

correct for this device.
 NO_SUPPORT No BIM data update possibility with this device.
 INCONSISTENT The data sets currently stored in the BIM are

inconsistent. A possible reason can be that a
previous update process was forcedly aborted
before completion. This may result in indefinite
behaviour concerning recognition of bank notes.

Events If the BIM status changes, no events will be automatically generated.

Exceptions The following exceptions can occur:
 JXFS_E_UNREGISTERED Device is not registered at the DM.
 JXFS_E_CLOSED Device is closed.
 JXFS_E_NOHARDWARE Device is not connected to the

workstation.

CWA 16008-5:2009 (E)

40

 JXFS_E_REMOTE Communication error during remote
call.

3.4.2.2 cashInInfo

Type JxfsCDRCashInStatus
Remarks Used to keep complete information about the current/last cash-in

transaction.
This property is the only way for multivendor purpose to get reliable
information about the currently cashed in money.

3.4.3 Methods

Following methods are specific to Recycler devices.

3.4.3.1 cashInStart – deprecated

Syntax identificationID cashInStart(int position) throws JxfsException;

Remarks Each cash in procedure has to be handled as a transaction that can be

rolled back, if a difference occurs between the amount counted by the
device and the amount the teller inserted. This command is used to start
the cash in transaction at the defined input position.

Parameter Type Name Description
 int Position Input position used

during cashIn.
For position codes see
output position codes
description in
Constants section.

Events Events, which can be generated by this method.

 JxfsOperationCompleteEvent

 When a cashInStartoperation is completed , this

JxfsOperationCompleteEvent is sent to all registered listeners with
following data:

 Field Value
 operationID JXFS_O_CDR_CASH_IN_START
 identificationID identificationID returned by method.
 result Common or device dependent error code. (See

section on Error Codes Summary and
Description).

 data None

 JxfsStatusEvent

 JXFS_S_CDR_DEVICE_STATUS_CHANGED
 JXFS_S_CDR_RESET_STATUS_CHANGED

CWA 16008-5:2009 (E)

41

3.4.3.2 cashInStart

Syntax identificationID cashInStart(int position, boolean trustedUser)
 throws JxfsException;

Remarks Each cash in procedure has to be handled as a transaction that can be

rolled back in any case if a difference occurs between the amount
counted by the device and the amount the teller inserted. This command
is used to start the cash in transaction at the defined input position.

If the device does not support the “trusted user mode” and the
trustedUser parameter is set to true, a JxfsException with the error code
JXFS_E_NOT_SUPPORTED is thrown.
This method deletes the signatures from internal data structures of the
device service.

Parameter Type Name Description
 int position Input position used during cashIn.

For position codes see output position codes
description in Constants section.

 boolean trustedUser If set to true, it specifies that this operation is
performed by a trusted user. That means that
category 2 and / or 3 banknotes (according to
European article 6 regulations) detected
during cash deposit operations within this
transaction should be treated as not
recognized. The device should dispense them
at its reject slot instead of retracting them.

Events Events, which can be generated by this method.

 JxfsOperationCompleteEvent

 When a cashInStart operation is completed, a

JxfsOperationCompleteEvent is sent to all registered listeners with
following data:

 Field Value
 operationID JXFS_O_CDR_CASH_IN_START
 identificationID identificationID returned by method.
 result Common or device dependent error code. (See

section on Error Codes Summary and
Description).

 data None

 JxfsStatusEvent

 JXFS_S_CDR_DEVICE_STATUS_CHANGED
 JXFS_S_CDR_RESET_STATUS_CHANGED

 JxfsIntermediateEvent

 JXFS_I_CDR_EURART6_EVENT_POSSIBLE

This is an optional event. If sent by device service it will indicate that
not only cashIn operation, but also cashInEnd operations can fire article
6 events during the cashIn transaction that is just starting.

CWA 16008-5:2009 (E)

42

3.4.3.3 cashInStart

Syntax identificationID cashInStart(int position, boolean trustedUser,
JxfsCDRCashValue maxValues[]) throws JxfsException;

Remarks This method is doing the same as the cashInStart method without

maxValue parameter. The only difference is that this method allows to
specify a maximum limit for at least one currency for the money to be
cashed in.

If the device service supports limits for accept operations can be queried
via acceptLimit in the JxfsCapabilities class.

If the limit for a certain currency is reached, no more items of this
currency are accepted in a cashIn operation. The device either stops
directly or continues to transport the remaining items into the refund
position.

The limit is not counted per cashIn execution, but for all accepted items
of the cash-in transaction.

If a currency is missing in the maxValues array no limit applies to that
currency.

A JXFS_I_CDR_MAX_VALUE_REACHED intermediate event per
cashIn command will be generated if

- a banknote will be rejected, because accepting it would
exceed one of the given limits or
- after the limit for a currency will be exactly matched by
accepted banknotes,

whatever comes first.

If article 6 is activated, some devices cannot guarantee not exceeding the
limit, because banknotes that have been recognized as C2/C3 may be
deposited and not returned if they are identified after the limit has been
reached.

If the execution of a cashIn command has resulted in a situation where
the limit was reached, no other cashIn commands will be executed
unless the cash-in transaction has been completed, i. e. ended by
cashInEnd or cancelled with cashInRollback. The cashIn command
returns with success if there is no other error condition. If the limit is
reached any additional cashIn commands will be rejected with a
JXFS_E_ILLEGAL code.

The reasons for this feature are several national laws and orders like
- the german "Geldwäschegesetz" (money laundering prevention law)
that defines special rules if a customer pays in a sum over a limit. To
prevent these special rules some banks do not allow a customer to cash
in more money as the limit. This limit is dependant on the customer (like
in the case private vs. business customer) and therefore is defined by the
application.
- insurance contracts that do not allow more than a specified sum in a
safe.

Parameter Type Name Description
 int position Input position used during cashIn.

For position codes see output position codes
description in Constants section.

CWA 16008-5:2009 (E)

43

 boolean trustedUser If set to true, it specifies that this operation is
performed by a trusted user. That means that
category 2 and/or 3 banknotes (according to
European article 6 regulations) detected
during cash deposit operations within this
transaction should be treated as not
recognized. The device should dispense them
at its reject slot instead of retracting them.

 JxfsCDR
CashVal
ue[]

maxValues Array of amount limits per currency.

Events Events, which can be generated by this method.

 JxfsOperationCompleteEvent

 When a cashInStart operation is completed,

aJxfsOperationCompleteEvent is sent to all registered listeners with
following data:

 Field Value
 operationID JXFS_O_CDR_CASH_IN_START
 identificationID identificationID returned by method.
 result Common or device dependent error code. (See

section on Error Codes Summary and
Description).

 data None

 JxfsStatusEvent

 all status events

 JxfsIntermediateEvent

 JXFS_I_CDR_EURART6_EVENT_POSSIBLE

This is an optional event. If sent by device service it will indicate that
not only cashIn operation, but also cashInEnd operations can fire article
6 events during the cashIn transaction that is just starting.

3.4.3.4 cashIn

Syntax identificationID cashIn(JxfsCashInOrder order) throws
JxfsException

Remarks Accept cash from the input slot.

This command transports notes from the cashin position to the cashin
module. The notes may pass through the banknote reader for
identification. Failure to identify notes does not mean that the command
has failed - even if the banknote reader refuses some or all of the notes,
the command may return JXFS_RC_SUCCESSFUL. In this case a
JXFS_I_CDR_INPUT_REFUSED intermediate event will be sent to
listeners.
If the device has an escrow then this command will cause inserted notes
to be moved there. If device also has a detector (see detector capability)
then some notes may be moved somewhere else (see cashInInfo
property). Notes in escrow will be held until the current cash-in
transaction is either cancelled by cashInRollback or confirmed by
cashInEnd commands. If there is no escrow then this command will

CWA 16008-5:2009 (E)

44

move notes directly to the cash units.

If shutterCmd property in capabilities is true then:
- If the input is a tray, the application has to ensure the cash is on the
tray and the shutter closed before calling cashIn() J/XFS operation.
- If the input is a slot, the application must open the shutter and call the
cashIn() J/XFS operation right after the shutter opened to start cash
acceptance.
- When cashIn completes, the refused items (if any) are not accessible to
the customer and the application has to call shutterMove to open/close
shutters for the input and refuse positions.

If items remain in the input and refuse position it is the preferred way to
clear the input position first and afterwards the refuse position.

Parameter Type Name Meaning
 JxfsCashInOrder order Specifies the notes or coins to accept.

 Depending on the hardware the
denomination property may have
different values for cashIn () operations.

For cash-in devices with a banknote
identification module the denomination
property is not considered by the device
service and preferably null. The
existence of a banknote identification
module is indicated by the detector
capability.

In case of a cash-in device without
detector the properties of the
JxfsDenomination object will be set as
follows:
cashbox:
The cashbox property is not used and
should be set to zero.
amount:
This value is not used because recyclers
without note detector are not able of
splitting an amount into denomitation
items. It should be set to zero.
vector of JxfsDenominationItem objects:
This property has to be filled
accordingly.

Events Additional events can be generated
 JxfsOperationCompleteEvent
 When a cashIn operation is completed a JxfsOperationCompleteEvent is

sent to all registered listeners with following data:

 Field Value
 OperationID JXFS_O_CDR_CASH_IN
 IdentificationID The corresponding ID
 Result Common or device dependent error code. (See

section on Error Codes Summary and
Description).

 Data If the eurArt6Capability capability is set to true

then this field will contain a
JxfsArt6CashInOrder object with the
appropriate information. Otherwise a
JxfsCashInOrder object will be returned.

CWA 16008-5:2009 (E)

45

 JxfsStatusEvent

 Note: If there are only category 1 banknotes, then they are returned

immediately to the teller/customer and are not stored on the escrow.
Therefore the cash unit status is not changed, and the
JXFS_S_CDR_CASHUNIT_CHANGED JxfsStatusEvent is not sent.

 JXFS_S_CDR_CASH_AVAILABLE

JXFS_S_CDR_CASH_TAKEN
JXFS_S_CDR_CASH_TRAY_CHANGED
JXFS_S_CDR_CASHUNIT_CHANGED
JXFS_S_CDR_CASHUNIT_THRESHOLD
JXFS_S_CDR_DEVICE_STATUS_CHANGED
JXFS_S_CDR_DISPENSER_STATUS_CHANGED
JXFS_S_CDR_INTERMEDIATE_STACKER_CHANGED
JXFS_S_CDR_TRANSPORT_CHANGED
JXFS_S_CDR_POSITION_CHANGED
JXFS_S_CDR_RESET_STATUS_CHANGED

 JxfsIntermediateEvent
 When a category 2 or category 3 banknote is detected, it generates a

JxfsIntermediateEvent. A single JxfsIntermediateEvent is sent per cashIn
operation.
JxfsIntermediateEvent events are sent by CDR Device Control to all
registered IntermediateListeners.
This JxfsIntermediateEvent is generated only when the eurArt6Capability
capability is set to true.

 Field Value
 OperationID JXFS_O_CDR_CASH_IN
 IdentificationID The corresponding ID.
 reason: JXFS_I_CDR_INPUT_EURART6

At least one category 2 or one category 3 banknote
has been detected.

 Data None; the information will be contained in
JxfsArt6CashInOrder of the
JxfsOperationCompleteEvent .

 JxfsIntermediateEvent
 When a deposited banknote is detected as category 1, it generates a

JxfsIntermediateEvent. A single JxfsIntermediateEvent is sent per cashIn
operation.
JxfsIntermediateEvent events are sent by CDR Device Control to all
registered IntermediateListeners.

 Field Value
 OperationID JXFS_O_CDR_CASH_IN
 IdentificationID The operation’s Identification Id.
 reason: JXFS_I_CDR_INPUT_REFUSED

At least one banknote was not recognized and
returned to the reject slot.

 Data Always null. Category 1 banknotes are returned
immediately to the teller/customer.

 JxfsIntermediateEvent
 When the acceptance limit defined by cashInStart is reached, this event is

sent.
 Field Value
 OperationID JXFS_O_CDR_CASH_IN
 IdentificationID The operation’s Identification Id.

CWA 16008-5:2009 (E)

46

 reason: JXFS_I_CDR_MAX_VALUE_REACHED
A banknote will be rejected, because accepting it
would exceed the given limit or the limit will be
exactly matched by accepted banknotes, whatever
comes first.

 Data Always null.

3.4.3.4.1 Example

For the example below, it is assumed that the following bank notes have been put into the
device:

• one US dollar bank note (category 1 as the BIM does not know anything about
dollars)

• two 5 € bank notes (one category 3 and one category 4 bank note)
• two 10 € bank notes (category 4)

Then the following data structure is returned as the result of the cashIn operation:

CWA 16008-5:2009 (E)

47

category2:JxfsCashInBanknoteType=null

:JxfsArt6CashInOrder

cashBox:long=0
amount:long=3000

denomination:JxfsDenomination

exponent:int=-2
currencyCode:JxfsCurrencyCode=EUR

currency:JxfsCurrency

array:int=[]

category2SigIds:

amount:long=500

category3:JxfsCashInBanknoteType CashInBanknoteItems:java.util.vector

amount:long=500
count:int=1

:JxfsCashInBanknote

currencyCode:JxfsCurrencyCode=EUR
variant:int=0
value:long=500
kind:int=JXFS_C_CDR_CURR_BILL

cashType:JxfsCashType

array:int=[1]

category3SigIds:

amount:long=2500

category4:JxfsCashInBanknoteType

amount:long=500
count:int=1

:JxfsCashInBanknote

currencyCode:JxfsCurrencyCode=EUR
variant:int=0
value:long=500
kind:int=JXFS_C_CDR_CURR_BILL

cashType:JxfsCashType

CashInBanknoteItems:java.util.vector

amount:long=2000
count:int=2

:JxfsCashInBanknote

currencyCode:JxfsCurrencyCode=EUR
variant:int=0
value:long=1000
kind:int=JXFS_C_CDR_CURR_BILL

cashType:JxfsCashType

items:java.util.vector

count:int=1
unit:int=1

:JxfsDenominationItem

count:int=1
unit:int=2

:JxfsDenominationItem

count:int=2
unit:int=3

:JxfsDenominationItem

CWA 16008-5:2009 (E)

48

3.4.3.5 cashInEnd

Syntax identificationID cashInEnd() throws JxfsException;

Remarks Each cash in procedure has to be handled as a transaction that can be

rolled back if a difference occurs between the amount counted by the
device and the amount the teller / customer inserted.
This command is used to end the cash in transaction.
If the device has an escrow then this command will move the notes from
the escrow to the cash in units. If the European article 6 regulations are
applicable, then the category 2 and 3 notes must be transported to the
appropriate area, with the following exception: if the “trusted
usermode” is set then all the category 2 and category 3 notes are
returned to the customer/teller, category 4 notes are transported to the
appropriate cashin units.
If there are no notes in the escrow an error code
JXFS_E_CDR_NO_BILLS is returned on the
JxfsOperationCompleteEvent Event and the cashin operation is
completed.

Note: If a JXFS_I_CDR_INPUT_EURART6 event is generated during
execution, the implication is that a customer has agreed on a sum figure
which may have since changed if a C2 banknote has been discovered,
because a C2 banknote is usually not credited to a customer. An
application has to take care that it is vendor and hardware specific, from
what moment a sum figure can be taken for granted (either the contents
of the ESCROW plus all already deposited money or the deposited
money after the end of the cashIn operation).

Events Events, which can be generated by this method.

 JxfsOperationCompleteEvent

 When a cashInEnd operation is completed, this

JxfsOperationCompleteEvent is sent to all registered listeners with
following data:

 Field Value
 operationID JXFS_O_CDR_CASH_IN_END
 identificationID identificationID returned by method.
 Result Common or device dependent error code. (See

section on Error Codes Summary and
Description).

 Data If the eurArt6Capability capability equals true,
this will return a JxfsArt6CashInOrder object
with the appropriate information, otherwise, a
JxfsCashInOrder object will be returned.

 Total amount and Denomination cashed in
since cashInStart.

 JxfsIntermediateEvent

 JXFS_I_CDR_INPUT_EURART6

This is an optional event that can be generated depending on vendor and
hardware design. See description of the
JXFS_I_CDR_EURART6_EVENT_POSSIBLE event for more details
on how application can know in advance if this event can be produced or
not.

CWA 16008-5:2009 (E)

49

 JxfsStatusEvent

 JXFS_S_CDR_CASHUNIT_CHANGED
 JXFS_S_CDR_CASHUNIT_THRESHOLD
 JXFS_S_CDR_DEVICE_STATUS_CHANGED
 JXFS_S_CDR_RESET_STATUS_CHANGED

CWA 16008-5:2009 (E)

50

3.4.3.6 cashInRollback

Syntax identificationID cashInRollback() throws JxfsException;

Remarks Moves the cash from the escrow to the rollback position.

Each cash in procedure has to be handled as a transaction that can be
rolled back if a difference occurs between the amount counted by the
device and the amount the teller/customer inserted.
If the device has a cash-in escrow then this command is used to rollback
the notes that are in the escrow to the teller/customer. If there are no
notes in the escrow an error code JXFS_E_CDR_NO_BILLS is returned
on the JxfsOperationCompleteEvent event and the cashInRollback
operation is completed.
If the European article 6 regulations are not applicable, then all the notes
cashed in since the last cashInStart command are returned to the teller /
customer,
In general, if the European article 6 regulations (or other countries
equivalent) are applicable, only category 4 notes are returned to the
customer/teller; with the following exception: If the “trusted user mode”
is set then all the notes are returned to the customer/teller It is assumed
that the category 1 notes are returned immediately to the teller/ customer
and are not stored in the escrow.

If shutterCmd property in capabilities is true, this command completes
when the cash has been moved to the rollback position even when it is
not accessible to the customer. Then it is the application responsibility to
call shutterMove to open/close the shutter.

Events Events, which can be generated by this method.

 JxfsOperationCompleteEvent

 When a cashInRollback operation is completed, this

JxfsOperationCompleteEvent is sent to all registered listeners with
following data:

 Field Value
 operationID JXFS_O_CDR_CASH_IN_ROLLBACK
 identificationID The corresponding ID.
 result Common or device dependent error code. (See

section on Error Codes Summary and
Description).

 data If the eurArt6Capability capability equals true,
this field will return a JxfsArt6CashInOrder
object with the appropriate information,
otherwise, a JxfsCashInOrder object will be
returned.

see section 9.4
for more details

 JxfsIntermediateEvent

 JXFS_I_CDR_PARTIAL_DISPENSE
 JXFS_I_CDR_INPUT_EURART6

CWA 16008-5:2009 (E)

51

 JxfsStatusEvent

 JXFS_S_CDR_CASH_AVAILABLE
 JXFS_S_CDR_CASH_TAKEN
 JXFS_S_CDR_CASH_TRAY_CHANGED
 JXFS_S_CDR_CASHUNIT_CHANGED
 JXFS_S_CDR_CASHUNIT_THRESHOLD
 JXFS_S_CDR_DEVICE_STATUS_CHANGED
 JXFS_S_CDR_DISPENSER_STATUS_CHANGED
 JXFS_S_CDR_INTERMEDIATE_STACKER_CHANGED
 JXFS_S_CDR_TRANSPORT_CHANGED
 JXFS_S_CDR_POSITION_CHANGED
 JXFS_S_CDR_RESET_STATUS_CHANGED

CWA 16008-5:2009 (E)

52

3.4.3.7 empty – deprecated

Syntax identificationID empty(JxfsDispenseRequest dispenseRequest) throws
JxfsException;

Remarks This method is used to empty the cash device of a particular

denomination of bills.

Parameter Type Name Description
 JxfsDispenseRequest dispenseRequest Contains all

parameter used to
empty the device.

Events Events, which can be generated by this method.

 JxfsOperationCompleteEvent

 When an empty operation is completed, this

JxfsOperationCompleteEvent is sent to all registered listeners with
following data:

 Field Value
 operationID JXFS_O_CDR_EMPTY
 identificationID identificationID returned by method.
 result Common or device dependent error code. (See

section on Error Codes Summary and
Description).

 data JxfsDispenseOrder object
 Dispensed cash.

When the operation is canceled during a partial
dispense, the returned JxfsDispenseOrder
contains the total amount of cash dispensed
before cancel occurred.

 JxfsIntermediateEvent

 JXFS_I_CDR_PARTIAL_DISPENSE

 JxfsStatusEvent

 JXFS_S_CDR_CASH_AVAILABLE
 JXFS_S_CDR_CASH_TAKEN
 JXFS_S_CDR_CASH_TRAY_CHANGED
 JXFS_S_CDR_CASHUNIT_CHANGED
 JXFS_S_CDR_CASHUNIT_THRESHOLD
 JXFS_S_CDR_DELAYED_DISPENSE
 JXFS_S_CDR_DELAYED_ORDER_CHANGED
 JXFS_S_CDR_DELAYED_ORDER_REMOVED
 JXFS_S_CDR_DEVICE_STATUS_CHANGED
 JXFS_S_CDR_DISPENSER_STATUS_CHANGED
 JXFS_S_CDR_INTERMEDIATE_STACKER_CHANGED
 JXFS_S_CDR_TRANSPORT_CHANGED
 JXFS_S_CDR_POSITION_CHANGED
 JXFS_S_CDR_RESET_STATUS_CHANGED

CWA 16008-5:2009 (E)

53

3.4.3.8 empty

Syntax identificationID empty(java.util.Vector names) throws JxfsException;

Remarks This method is used to empty one or more physical cash units of the

device.

Parameter Type Name Description
 java.util.Vector names A vector of Strings containing the name

attribute of the physical cash units to
empty.

Events Events, which can be generated by this method.

 JxfsOperationCompleteEvent

 When an empty operation is completed, this

JxfsOperationCompleteEvent is sent to all registered listeners with
following data:

 Field Value
 OperationID JXFS_O_CDR_EMPTY
 IdentificationID IdentificationID returned by method.
 Result Common or device dependent error code. (See

section on Error Codes Summary and
Description).

 Data JxfsDispenseOrder object
 Dispensed cash.

When the operation is canceled during a partial
dispense, the returned JxfsDispenseOrder
contains the total amount of cash dispensed
before cancel occurred.

 JxfsIntermediateEvent

 JXFS_I_CDR_PARTIAL_DISPENSE

 JxfsStatusEvent

 JXFS_S_CDR_CASH_AVAILABLE
 JXFS_S_CDR_CASH_TAKEN
 JXFS_S_CDR_CASH_TRAY_CHANGED
 JXFS_S_CDR_CASHUNIT_CHANGED
 JXFS_S_CDR_CASHUNIT_THRESHOLD
 JXFS_S_CDR_DELAYED_DISPENSE
 JXFS_S_CDR_DELAYED_ORDER_CHANGED
 JXFS_S_CDR_DELAYED_ORDER_REMOVED
 JXFS_S_CDR_DEVICE_STATUS_CHANGED
 JXFS_S_CDR_DISPENSER_STATUS_CHANGED
 JXFS_S_CDR_INTERMEDIATE_STACKER_CHANGED
 JXFS_S_CDR_TRANSPORT_CHANGED
 JXFS_S_CDR_POSITION_CHANGED
 JXFS_S_CDR_RESET_STATUS_CHANGED

CWA 16008-5:2009 (E)

54

3.4.3.9 querySignatures

Syntax identificationID querySignatures(int[] signatureIds) throws
JxfsException;

Remarks This method queries category 2 and 3 banknote signatures for given

signature identification numbers.

Since article 6 signatures can accumulate during a deposit transaction,
this method should be queried on completion of the transaction in order
to ensure the complete set of article 6 signatures are available.

This operation succeeds if and only if signatures for all identification
numbers specified by the signatureIds parameter are available. If there
are no signatures available for one of the given signatureIds the code
JXFS_E_CDR_INVALID_SIGNATURE_ID is returned on the
JxfsOperationCompleteEvent.

The signatures are stored by the Device Service in persistent mode in
such a way that they may be recovered after application, Device Service
or power failure or system restart. The signatures are deleted from
internal data structures of the device service by the cashInStart method.

Parameter Type Name Description
 int[] signatureIds List of signature identification numbers. One

should use numbers contained in category 2
and category 3 SigIds properties
JxfsArt6CashInOrder objects returned by
cashIn command.

Events Events, which can be generated by this method.

 JxfsOperationCompleteEvent

 When a querySignatures operation is completed, this

JxfsOperationCompleteEvent is sent to all registered listeners with the
following data:

 Field Value
 operationID JXFS_O_CDR_QUERY_SIGNATURES
 identificationID identificationID returned by method.
 result Common or device dependent error code. (See

section on Error Codes Summary and
Description).

 data java.util.Hashtable object
 This associative map contains signature

identification numbers (represented by
java.lang.Integer objects) as keys and signature
information (represented by a byte[] objects) as
values.

CWA 16008-5:2009 (E)

55

3.4.3.10 updateBIMDataSets

Syntax identificationID updateBIMDataSets() throws JxfsException;

Remarks A method to trigger a data set update.

If this command is initiated while the BIM status is either
NO_SOURCE, NO_MATCH or NO_SUPPORT, the command will fail
with JXS_E_CDR_NO_UPDATE_NECESSARY or
JXFS_E_CDR_NO_DATA_SET_MATCH (depending on the reason).
Some devices may even fail, if the BIM status is OK_OLDER in
advance to calling updateBIMDataSets () because of security regulations
(never update with an older version).

This command may fail, if banknotes are inside the device that are
affected by the update. This can be the case if the new data sets do not
contain a JxfsCashType that has been present in the previous one and at
least one banknote of that type is in the device.

After performing this command the configuration of logical cash units
may change.

Events Events, which can be generated by this method.

 JxfsOperationCompleteEvent

 When an updateBIMDataSets operation is completed, this

JxfsOperationCompleteEvent is sent to all registered listeners with
following data:

 Field Value
 operationID JXFS_O_CDR_UPDATE_BIM_DATA_SETS
 identificationID identificationID returned by method.
 result Common or device dependent error code. (See

section on Error Codes Summary and
Description).

 data null

CWA 16008-5:2009 (E)

56

3.4.3.11 createSignature

Syntax identificationID createSignature(int inputPosn, int outputPosn)
throws JxfsException;

Remarks This method is used to retrieve detailed information for a single item.

This is typically used to obtain the reference signature(s) for an item that
is known to be a forgery. These reference signatures can then be
compared against those retrieved following one of the methods that
create signatures in order to determine whether any forged items were
inserted by the customer. The application may have to call this method
repeatedly to ensure that all possible signatures are captured.

Check the position capabilities and the capabilities for the signature
creation to see if signature creation is supported at all and, if yes, for
which positions. The exact processing is dependant on the position
design.

Parameter Type Name Description
 int inputPosn The input position where the reference item

should be inserted.
 int outputPosn The output position where the reference item

will be presented for removal.

 JxfsOperationCompleteEvent

 When a createSignature operation is completed, this

JxfsOperationCompleteEvent is sent to all registered listeners with
following data:

 Field Value
 operationID JXFS_O_CDR_CREATE_SIGNATURE
 identificationID identificationID returned by method.
 result JXFS_RC_SUCCESSFUL
 Common or device dependent error code. (See

section on Error codes).

 data JxfsCDRCreateSignatureResult object.

Even if the device in general is able to scan multiple
orientations in one operation it may be that not all of
these orientations have been scanned in one run due
to technical limitations. If not all expected
orientations have been scanned the operation will
return successfully unless not even one orientation is
available.

CWA 16008-5:2009 (E)

57

3.5 IJxfsATMControl

3.5.1 Summary

Extends Implements
IJxfsBaseControl

Property Type Access
retractArea JxfsRetractArea R deprecated

Method Return
present identificationID
reject identificationID
retract identificationID
shutterMove identificationID

CWA 16008-5:2009 (E)

58

3.5.2 Methods

Following methods are specific to ATM devices.

3.5.2.1 present

Syntax identificationID present() throws JxfsException;

Remarks This command causes presentation of the cash. It can be used only

following the dispense method.

The command completes when the bills are positioned at the exit slot of
the device.

A specific JXFS_S_CDR_CASH_TAKEN status event is generated
when the user has removed the bills and position contents are not
customer accesible anymore.

If no JXFS_S_CDR_POSITION_CHANGE event indicating that
position has been emptied is received within a reasonable time period,
the application should send a retract method to clear the bills from the
exit.

On devices which do not have the ability to detect when bills are taken
the JXFS_S_CDR_POSITION_CHANGE status event indicating that
position contents are unknown is generated as soon as the bills are
available to the user.

When shutterCmd property in capabilities is true, present method is
equivalent to shutterMove(true,position) for the position used to
dispense. Then the application has to close the shutter once the position
is empty.

Refer to sequence diagrams at the end of the document for usage
samples.

Events Events, which can be generated by this method.

 JxfsOperationCompleteEvent

 When a present operation is completed, this

JxfsOperationCompleteEvent is sent to all registered listeners with
following data:

 Field Value
 operationID JXFS_O_CDR_PRESENT
 identificationID identificationID returned by method.
 result Common or device dependent error code. (See

section on Error Codes Summary and
Description).

 data none

 JxfsStatusEvent

 JXFS_S_CDR_CASH_AVAILABLE
 JXFS_S_CDR_CASH_TAKEN
 JXFS_S_CDR_CASH_TRAY_CHANGED
 JXFS_S_CDR_DEVICE_STATUS_CHANGED

CWA 16008-5:2009 (E)

59

 JXFS_S_CDR_INTERMEDIATE_STACKER_CHANGED
 JXFS_S_CDR_POSITION_CHANGED
 JXFS_S_CDR_RESET_STATUS_CHANGED

CWA 16008-5:2009 (E)

60

3.5.2.2 reject

Syntax identificationID reject(boolean present) throws JxfsException;

Remarks Specifies if the rejected cash should be presented to the user at the

position specified by the preceding dispense, dispenseExec or
calibrateCashUnit method (present = true) or, whether the cash should
be moved to the reject bin.

Parameter Type Name Description
 boolean present Specifies if the cash

should be presented to
user using the
specified position
(=true) or, if the
money should only be
transported to the
stacker (=false).

Events Events, which can be generated by this method.

 JxfsOperationCompleteEvent

 When a reject operation is completed, this JxfsOperationCompleteEvent

is sent to all registered listeners with following data:

 Field Value
 operationID JXFS_O_CDR_REJECT
 identificationID identificationID returned by method.
 result Common or device dependent error code. (See

section on Error Codes Summary and
Description).

 data JxfsCashUnit object

 JxfsStatusEvent

 JXFS_S_CDR_CASH_AVAILABLE
 JXFS_S_CDR_CASH_TAKEN
 JXFS_S_CDR_CASH_TRAY_CHANGED
 JXFS_S_CDR_CASHUNIT_CHANGED
 JXFS_S_CDR_CASHUNIT_THRESHOLD
 JXFS_S_CDR_DEVICE_STATUS_CHANGED
 JXFS_S_CDR_DISPENSER_STATUS_CHANGED
 JXFS_S_CDR_INTERMEDIATE_STACKER_CHANGED
 JXFS_S_CDR_POSITION_CHANGED
 JXFS_S_CDR_RESET_STATUS_CHANGED

CWA 16008-5:2009 (E)

61

3.5.2.3 retract

Syntax identificationID retract(JxfsRetractArea retractArea) throws
JxfsException;

Remarks This command allows the application to force cash that has been

presented to be retracted. Not all ATMs support this capability. This
method may only be called following a dispense, dispenseExec,
cashInRollback or present method.

Parameter Type Name Description
 JxfsRetractArea retractArea Specifying the retract area to which

the notes will be withdrawn.

For C2/C3 notes final storage could
be different. Check cash unit
information after completion to
identify final location of notes.

Events Events, which can be generated by this method.

 JxfsOperationCompleteEvent

 When a retract operation is completed, this

JxfsOperationCompleteEvent is sent to all registered listeners with
following data:

 Field Value
 operationID JXFS_O_CDR_RETRACT
 identificationID identificationID returned by method.
 result Common or device dependent error code. (See

section on Error Codes Summary and
Description).

 data JxfsCashUnit object

 JxfsIntermediateEvent

 JXFS_I_CDR_INPUT_EURART6

This event may only be generated if these two conditions are met:
trustedUser is false and retract is performed within a cash acceptance
transaction (between cashInStart and cashInEnd).

 JxfsStatusEvent

 JXFS_S_CDR_CASH_TRAY_CHANGED
 JXFS_S_CDR_CASHUNIT_CHANGED
 JXFS_S_CDR_CASHUNIT_THRESHOLD
 JXFS_S_CDR_DEVICE_STATUS_CHANGED
 JXFS_S_CDR_DISPENSER_STATUS_CHANGED
 JXFS_S_CDR_INTERMEDIATE_STACKER_CHANGED
 JXFS_S_CDR_POSITION_CHANGED
 JXFS_S_CDR_RESET_STATUS_CHANGED

CWA 16008-5:2009 (E)

62

3.5.2.4 shutterMove

Syntax identificationID shutterMove(boolean open, int position) throws
JxfsException;

Remarks This method allows the calling application to open and close a position

shutter. The open parameter specifies in which direction the shutter
should be moved. The position parameter determines for which position
the shutter is moved.

If the position is not empty, opening the shutter will move items to a
position accessible to the customer, and closing the shutter will move
items back if necessary.

This method can only be used if shutterCmd property in capabilities is
true. Otherwise a JXFS_E_NOT_SUPPORTED completion is returned.

In case shutterCmd property for a given position is true, if application is
about to perform a shutterMove operation in this position and the
physical device decides to implicitely perform the same movement just
before, the shutterMove job should complete with
JXFS_RC_SUCCESSFUL.

Refer to sequence diagrams at the end of the document (chapter Shutter
Handling sequence diagrams) for usage samples.

Parameter Type Name Description
 boolean open true – open shutter

false – close shutter
 int position Specifies the output

position to which side
to move.

 Value Description
 JXFS_C_CDR_POS_NONE No position selected
 JXFS_C_CDR_POS_DEFAULT Use configurated position
 JXFS_C_CDR_POS_LEFT Use left output side
 JXFS_C_CDR_POS_CENTER Use center output side
 JXFS_C_CDR_POS_RIGHT Use right output side
 JXFS_C_CDR_POS_FRONT Use front output side
 JXFS_C_CDR_POS_REAR Use rear output side
 JXFS_C_CDR_POS_TOP Use top output side
 JXFS_C_CDR_POS_BOTTOM Use bottom output side
 JXFS_C_CDR_POS_REJECT Use reject cassette

Events Events, which can be generated by this method.

 JxfsOperationCompleteEvent

 When a shutterMove operation is completed, this

JxfsOperationCompleteEvent is sent to all registered listeners with
following data:

 Field Value
 operationID JXFS_O_CDR_SHUTTER_MOVE
 identificationID identificationID returned by method.
 result Common or device dependent error code. (See

section on Error Codes Summary and
Description).

 data none

CWA 16008-5:2009 (E)

63

 JxfsStatusEvent

 JXFS_S_CDR_DEVICE_STATUS_CHANGED
 JXFS_S_CDR_SHUTTER_CHANGED
 JXFS_S_CDR_POSITION_CHANGED
 JXFS_S_CDR_RESET_STATUS_CHANGED

CWA 16008-5:2009 (E)

64

4 Support Classes

4.1 Summary

Class Description
JxfsArt6CashInOrder Subclass of JxfsCashInOrder. Contains additional information

regarding Article 6 handling.
JxfsCalibrateItem Data used for initialization and calibration of cash units.
JxfsCapabilities Contains the Capabilities of a cash dispenser.
JxfsCashInBanknote Used by JxfsCashInBanknoteType to store Article 6

infomormation of deposited banknotes.
JxfsCashInBanknoteType Contains Article 6 information about deposited banknotes.
JxfsCashInOrder This class specifies all data required for cashIn operations.
JxfsCashType Used to differentiate between bills and coins.
JxfsCashUnit Information about the status and contents of the logical and

physical cash units.
JxfsCurrency Defines a Currency.
JxfsCurrencyCode Contains a 3-character string detailing a currency code as

defined by the ISO standard.
JxfsDelay Used for openSafeDoor operation
JxfsDenomination The JxfsDenomination holds a collection of

JxfsDenominationItems that sum up to an amount of cash.
JxfsDenominationInfo Stores the validation settings for a given denomination or cash

type.
JxfsDenominationItem A JxfsDenominationItem specifies a logical cash unit and the

number of bills or coins that were dispensed from this unit or
that should be deposited into this unit.

JxfsDispenseOrder This class specifies all data required to perform a dispense
operation.

JxfsDispenseRequest This class specifies all data required for requesting a dispense
or an empty operation.

JxfsEurArt6Capability Denotes the capability of a device to handle the european article
6 rules.

JxfsLogicalCashUnit Logical information about a cash unit.
JxfsMixEntry Contains a reference to the logical cash unit and the number of

bills/coins used in mixing.
JxfsMixInfo Type for identifying mix algorithm and/or house mix tables.
JxfsMixItem Specifies an amount used in a JxfsMixTable. The amount is

expressed in MDU’s.
JxfsMixTable Contains complete description of one house mix table.
JxfsPhysicalCashUnit Information about a physical cash unit.
JxfsRetractArea Contains information about positions to be used during retract.
JxfsThreshold Defines cassette thresholds.
JxfsCashUnitTestError Information about failed cash units at test dispense.
JxfsCDRArt6Categories Indicates present of article 6 categories in cash unit.
JxfsCDRCashInStatus Information about the current/last cash-in transaction.
JxfsCDRCashValue Used to specify an amount for a given currency.
JxfsCDRCreateSignatureC
apabilities

Capabilities about how to create reference signatures.

JxfsCDRCreateSignatureR
esult

Result object of a createSignature operation.

JxfsCDRReferenceSignatu
re

Object to store the reference signature for one orientation.

CWA 16008-5:2009 (E)

65

4.2 Details

4.2.1 JxfsArt6CashInOrder

4.2.1.1 Usage

This class specifies data about deposited notes and their classification according to the
European article 6 rules.
It is a subclass of the JxfsCashInOrder
The information contained in this class are only relevant if the eurArt6Capability is set to true.

4.2.1.2 Summary

Extends Implements
JxfsCashInOrder

Property Type Access
category2 JxfsCashInBanknoteType R
category2SigIds int[] R
category3 JxfsCashInBanknoteType R
category3SigIds int[] R
category4 JxfsCashInBanknoteType R

Constructors Parameter Parameter-Type
JxfsArt6CashInOrder denomination JxfsDenomination
 currency JxfsCurrency
 category2 JxfsCashInBanknoteType
 category2SigIds int[]
 category3 JxfsCashInBanknoteType
 category3 SigIds int[]
 category4 JxfsCashInBanknoteType

Method Return
getProperty Property

4.2.1.3 Properties

4.2.1.3.1 category2 (R)

Type JxfsCashInBanknoteType
Remarks Contains information about the deposited banknotes detected as category

2 banknotes.

4.2.1.3.2 category2SigIds (R)

Type int []
Remarks Signature identification of category 2 banknotes. The array is empty, if

no signatures are available.

CWA 16008-5:2009 (E)

66

4.2.1.3.3 category3 (R)

Type JxfsCashInBanknoteType
Remarks Contains information about the deposited banknotes detected as category

3 banknotes.

4.2.1.3.4 category3 SigIds(R)

Type int []
Remarks Signature identification of category 3 banknotes. The array is empty, if

no signatures are available.

4.2.1.3.5 category4 (R)

Type JxfsCashInBanknoteType
Remarks Contains information about the deposited banknotes detected as category

4 banknotes.

CWA 16008-5:2009 (E)

67

4.2.2 JxfsCalibrateItem

4.2.2.1 Usage

Data used for initialization and calibration of cash units. The vendor supplied service control is
responsible for mapping from logical to physical cash units.

4.2.2.2 Summary

Extends Implements
JxfsType

Property Type Access
logicalNumber int RW
billsCount int RW
position int RW

Constructor Parameter Parameter-Type
JxfsCalibrateItem logicalNumber int
 billsCount int
 position int

Method Return
getProperty Property
setProperty void

4.2.2.3 Properties

4.2.2.3.1 logicalNumber (RW)

Type int
Remarks This value specifies the number of the logical cash unit to be used

during the initialization.

4.2.2.3.2 billsCount (RW)

Type int
Remarks On input this value specifies the number of bills to dispense.

4.2.2.3.3 position (RW)

Type int
Remarks Specifies the output position to dispense the note. (Defined as dispense

position code).

CWA 16008-5:2009 (E)

68

4.2.3 JxfsCapabilities

4.2.3.1 Usage

Used to query the JxfsCapabilities of a cash dispenser, recycler and ATM.

4.2.3.2 Summary

Extends Implements
JxfsType

Property Type Access
autoPresent boolean R
cdType int R
eurArt6capability JxfsEurArt6Capability R
trustedUser boolean R
maxInBills int R
maxInCoins int R
maxOutBills int R
maxOutCoins int R
compound boolean R
shutterCmd boolean R
retract boolean R
safeDoorCmd boolean R
coins boolean R
cylinders boolean R
cashBox boolean R
refill boolean R
dispense boolean R
deposit boolean R
checkVandalism boolean R
intermediateStacker boolean R
billsTakenSensor boolean R
inputPositions int R
outputPositions int R
defaultInputPosition int R
defaultOutputPosition int R
silentAlarm boolean R
escrow boolean R
escrowSize int R
detector boolean R
baitTrap boolean R
vendorData java.lang.String R
testCashUnit boolean R
multipleCurrenciesCashIn
Supported

boolean R

acceptLimit boolean R
deviceOrientation JxfsCDRDeviceOrientationEnum R
signatureCreation JxfsCDRCreateSignatureCapabilities R
defaultRollbackPosition int R
positionsCapabilities JxfsCDRPositionCapabilities[] R
safeDoorSequence JxfsCDRSafeDoorSequenceEnum R

CWA 16008-5:2009 (E)

69

Constructor #1 Parameter Parameter-Type
JxfsCapabilities autoPresent boolean
 cdType int
 eurArt6Capability JxfsEurArt6Capability
 trustedUser boolean
 maxInBills int
 maxInCoins int
 maxOutBills int
 maxOutCoins int
 compound boolean
 shutterCmd boolean
 retract boolean
 safeDoorCmd boolean
 coins boolean
 cylinders boolean
 cashBox boolean
 refill boolean
 dispense boolean
 deposit boolean
 checkVandalism boolean
 intermediateStacker boolean
 billsTakenSensor boolean
 inputPositions int
 outputPositions int
 defaultInputPosition int
 defaultOutputPosition int
 silentAlarm boolean
 escrow boolean
 escrowSize int
 detector boolean
 baitTrap boolean
 vendorData java.lang.String

CWA 16008-5:2009 (E)

70

Constructor #2 Parameter Parameter-Type
JxfsCapabilities autoPresent boolean
 cdType int
 eurArt6Capability JxfsEurArt6Capability
 trustedUser boolean
 maxInBills int
 maxInCoins int
 maxOutBills int
 maxOutCoins int
 compound boolean
 shutterCmd boolean
 retract boolean
 safeDoorCmd boolean
 coins boolean
 cylinders boolean
 cashBox boolean
 refill boolean
 dispense boolean
 deposit boolean
 checkVandalism boolean
 intermediateStacker boolean
 billsTakenSensor boolean
 inputPositions int
 outputPositions int
 defaultInputPosition int
 defaultOutputPosition int
 silentAlarm boolean
 escrow boolean
 escrowSize int
 detector boolean
 baitTrap boolean
 vendorData java.lang.String
 testCashUnit boolean
 multipleCurrenciesCashInSupported boolean
 acceptLimit boolean
 deviceOrientation JxfsCDRDeviceOrient

ationEnum
 signatureCreation JxfsCDRCreateSignatu

reCapabilities
 defaultRollbackPosition int
 positionsCapabilities JxfsCDRPositionCapa

bilities []
 safeDoorSequence JxfsCDRSafeDoorSequ

enceEnum

Method Return
getProperty Property
isProperty boolean

CWA 16008-5:2009 (E)

71

4.2.3.3 Properties

4.2.3.3.1 autoPresent (R)

Type boolean
Remarks This specifies whether cash will be automatically presented to the user

on execution of a dispense (autoPresent set to true), or whether the cash
will only be transported to the stacker. In the latter case, a present
command will need to be issued following the dispense (or following
each part of a multi-partition dispense).
If this property is set to true, then the shutterCmd capability will be
false, as it would not be possible for the calling application to determine
when it should open the dispense shutter, due to the possibility for a
dispense to be delayed.

4.2.3.3.2 cdType (R)

Type int
Remarks Type of device.
 One of the following values:

JXFS_C_CDR_TYPE_NONE
JXFS_C_CDR_TYPE_DISPENSER
JXFS_C_CDR_TYPE_RECYCLER
JXFS_C_CDR_TYPE_ATM

4.2.3.3.3 eurArt6Capability (R)

Type JxfsEurArt6Capability
Remarks This specifies whether this cash recycler device is able to handle

banknotes according to European article 6 regulations or not.

4.2.3.3.4 trustedUser (R)

Type boolean
Remarks If set to true, then this property specifies that the cash recycler is able to

handle the special “trusted user” mode in cashInEnd and cashInRollback
operations. This property makes sense only if the device supports the
European article 6.

4.2.3.3.5 maxInBills (R)

Type int
Remarks Maximum number of bills to be accepted by one command.

4.2.3.3.6 maxInCoins (R)

Type int
Remarks Maximum number of coins to be accepted by one command.

4.2.3.3.7 maxOutBills (R)

Type int
Remarks Maximum number of bills to be dispensed by one command.

CWA 16008-5:2009 (E)

72

4.2.3.3.8 maxOutCoins (R)

Type int
Remarks Maximum number of coins to be dispensed by one command.

4.2.3.3.9 compound (R)

Type boolean
Remarks Is logical device part of compound physical device.

4.2.3.3.10 shutterCmd (R)

Type boolean
Remarks Defines if explicit shutter handling required. When this property is true,

the application will be responsible for opening and closing the shutter,
using shutterMove, for at least one position (see positionsCapabilities
for positions).

As a device may have positions with different hardware
implementations please refer to
JxfsCDRPositionCapabilities.shutterCmd for guidance for an individual
position.

4.2.3.3.11 retract (R)

Type boolean
Remarks The cash dispenser can retract presented bills.

4.2.3.3.12 safeDoorCmd (R)

Type boolean
Remarks This device supports a safe door command.

4.2.3.3.13 coins (R)

Type boolean
Remarks The device includes a coin dispenser.

4.2.3.3.14 cylinders (R)

Type boolean
Remarks The coin dispenser can accept a number of coins per cylinder as input or

only totals are allowed.

4.2.3.3.15 cashBox (R)

Type boolean
Remarks The service can handle a cash box.

4.2.3.3.16 refill (R)

Type boolean
Remarks Can the device be refilled by placing bills on the stack.

CWA 16008-5:2009 (E)

73

4.2.3.3.17 dispense (R)

Type boolean
Remarks The device can dispense cash.

4.2.3.3.18 deposit (R)

Type boolean
Remarks The device can deposit cash.

4.2.3.3.19 checkVandalism (R)

Type boolean
Remarks The device can detect vandalism.

4.2.3.3.20 intermediateStacker (R)

Type boolean
Remarks The device has a temporary storage before presenting bills.

4.2.3.3.21 billsTakenSensor (R)

Type boolean
Remarks The device has a bills taken sensor.

4.2.3.3.22 inputPositions (R) - Deprecated

Type int
Remarks Specifies the possible input positions to accept cash.

(Defined as dispense position codes)
Deprecated. Use positionsCapabilities instead.

4.2.3.3.23 outputPositions (R) - Deprecated

Type int
Remarks Specifies the possible output positions to dispense cash.

(Defined as dispense position codes)
Deprecated. Use positionsCapabilities instead.

4.2.3.3.24 defaultInputPosition (R)

Type int
Remarks Specifies the default input position to accept cash.

(Defined as dispense position code)

4.2.3.3.25 defaultOutputPosition (R)

Type int
Remarks Specifies the default output position to dispense cash.

(Defined as dispense position code)

CWA 16008-5:2009 (E)

74

4.2.3.3.26 silentAlarm (R)

Type boolean
Remarks The device supports a silent alarm feature.

4.2.3.3.27 escrow (R)

Type boolean
Remarks The device supports an escrow.

4.2.3.3.28 escrowSize (R)

Type int
Remarks Specifies the maximum number of bills on the escrow.

4.2.3.3.29 detector (R)

Type boolean
Remarks The device supports a detector to verify accepted cash.

4.2.3.3.30 baitTrap (R)

Type boolean
Remarks The device supports functionality to emit marked notes during dispense.

4.2.3.3.31 vendorData (R)

Type java.lang.String
Remarks Vendor specific data.

4.2.3.3.32 testCashUnit (R)

Type boolean
Remarks Specifies whether the device service supports the testCashUnit method.

4.2.3.3.33 multipleCurrenciesCashInSupported (R)

Type boolean
Remarks Indicates if the device supports cash-in of more than one currency in a

cash-in operation.

4.2.3.3.34 acceptLimit (R)

Type boolean
Remarks Specifies if the device service accepts that a cash-in limit will be set by

the cashInStart method.

4.2.3.3.35 deviceOrientation (R)

Type JxfsCDRDeviceOrientationEnum
Remarks Provides information how the device processes banknotes. This value is

necessary if an application wants to show a customer graphically how to
handle the banknotes when performing the createSignature handling.

CWA 16008-5:2009 (E)

75

4.2.3.3.36 signatureCreation (R)

Type JxfsCDRCreateSignatureCapabilities
Remarks Provides the capabilities of the device for creating all necessary

reference signature of a category 2 or category 3 banknote.

4.2.3.3.37 defaultRollbackPosition (R)

Type int
Remarks Specifies the default output position to rollback cash.

(Defined as dispense position code)

4.2.3.3.38 positionsCapabilities (R)

Type JxfsCDRPositionCapabilities[]
Remarks Specifies the capabilities of each position supported by the device. An

empty array indicates that this value is unknown.

Each object in the array reported by this property should contain a
unique value for its position property, representing a single position. All
positions (including default ones) should be part of this array.

4.2.3.3.39 safeDoorSequence (R)

Type JxfsCDRSafeDoorSequenceEnum
Remarks Valid command sequence for the safe door command.

4.2.3.4 Constructors

4.2.3.4.1 JxfsCapabilities

Syntax public JxfsCapabilities(boolean autopresent, int cdType,
JxfsEurArt6Capability eurArt6capability, boolean trustedUser, int
maxInBills, int maxInCoins, int maxOutBills, int maxOutCoins, boolean
compoind, boolean shutterCmd, boolean retract, boolean safeDoorCmd,
boolean coins, boolean cylinders, boolean cashBox, boolean refill, boolean
dispense, boolean deposit, boolean checkVandalism, boolean
intermediateStacker, boolean billsTakenSensor, int inputPositions, int
outputPositions, int defaultInputPosition, boolean defaultOutputPosition,
boolean silentAlarm, boolean escrow, int escrowSize, boolean detector,
boolean baitTrap, java.lang.String vendorData) throws JxfsException

Remarks testCashUnit will be set to false.
multipleCurrenciesCashInSupported will be set to false.
accessLimit will be set to false.
deviceOrientation will be set to unknown.
signatureCreation will be set to the default object.
defaultRollbackPosition will be set to JXFS_C_CDR_POS_NONE.
positionsCapabilities will be set to an empty array.
safeDoorSequence wll be set to unknown.

Exceptions No additional exceptions are generated by this constructor.

4.2.3.4.2 JxfsCapabilities

Syntax public JxfsCapabilities(boolean autopresent, int cdType,
JxfsEurArt6Capability eurArt6capability, boolean trustedUser, int
maxInBills, int maxInCoins, int maxOutBills, int maxOutCoins, boolean
compoind, boolean shutterCmd, boolren retract, boolean safeDoorCmd,
boolean coins, boolean cylinders, boolean cashBox, boolean refill, boolean

CWA 16008-5:2009 (E)

76

dispense, boolean deposit, boolean checkVandalism, boolean
intermediateStacker, boolean billsTakenSensor, int inputPositions, int
outputPositions, int defaultInputPosition, boolean defaultOutputPosition,
boolean silentAlarm, boolean escrow, int escrowSize, boolean detector,
boolean baitTrap, java.lang.String vendorData, boolean testCashUnit,
boolean multipleCurrenciesCashInSupported, boolean acceptLimit,
JxfsCDRDeviceOrientationEnum deviceOrientation,
JxfsCDRCreateSignatureCapabilities signatureCreation, int
defaultRollbackPosition, JxfsCDRPositionCapabilities
positionsCapabilities[], JxfsCDRSafeDoorSequenceEnum
safeDoorSequence) throws JxfsException

Remarks
Exceptions Exceptions, which can be generated by this method.
 JXFS_E_PARAMETER_INVALID Generated if one of the following

cases applies:
- eurArt6Capability is null
- deviceOrientation is null
- signatureCreation is null
- positionsCapabilities is null
- safeDoorSequence is null

CWA 16008-5:2009 (E)

77

4.2.4 JxfsCashInBanknote

4.2.4.1 Usage
Used to query the information of the cashed in banknote.

4.2.4.2 Summary

Extends Implements
JxfsType

Property Type Access
cashType JxfsCashType R
count int R
amount long R

Constructor Parameter Parameter-Type
JxfsCashInBanknote cashType JxfsCashType
 count long
 amount long

Method Return
getProperty Property

4.2.4.3 Properties

4.2.4.3.1 cashType (R)

Type JxfsCashType
Remarks Information about the note type. See the JxfsCashType class.

4.2.4.3.2 count (R)

Type int
Remarks Total number of this type of note and for this category cashed in.

4.2.4.3.3 amount (R)

Type long
Remarks Total amount of this type of note and for this category cashed in,

expressed in MDUs.

CWA 16008-5:2009 (E)

78

4.2.5 JxfsCashInBanknoteType

4.2.5.1 Usage
This class contains information about the deposited banknote.

4.2.5.2 Summary

Extends Implements
JxfsType

Property Type Access
amount long R
cashInBanknoteItems java.util.Vector of

JxfsCashInBanknote
R

Constructor Parameter Parameter-Type
JxfsCashInBanknoteType amount long
 cashInBanknoteItems java.util.Vector of

JxfsCashInBanknote

Method Return
getProperty Property

4.2.5.3 Properties

4.2.5.3.1 amount (R)

Type long
Remarks Total cashed in amount in this category expressed in MDUs.

4.2.5.3.2 cashInBanknoteItems (R)

Type java.util.Vector
Remarks Data information about the banknotes cashed in.

CWA 16008-5:2009 (E)

79

4.2.6 JxfsCashInOrder

4.2.6.1 Usage

This class specifies all data required for cash-in operations.

4.2.6.2 Summary

Extends Implements
JxfsType

Property Type Access
denomination JxfsDenomination RW
currency JxfsCurrency RW

Constructor Parameter Parameter-Type
JxfsCashInOrder denomination JxfsDenomination
 currency JxfsCurrency

Method Return
getProperty Property
setProperty void

4.2.6.3 Properties

4.2.6.3.1 denomination (RW)

Type JxfsDenomination
Remarks Specifies the amount to cash-in or the amount accepted.

4.2.6.3.2 currency (RW)

Type JxfsCurrency
Remarks Specifies the currency to use.

CWA 16008-5:2009 (E)

80

4.2.7 JxfsCashType

4.2.7.1 Usage
This class is used to carry all the information that is required to uniquely define a cash item
(e.g.: a bank note or coin).

4.2.7.2 Summary

Extends Implements
JxfsType

Property Type Access
kind int R
currencyCode JxfsCurrencyCode R
value int R
variant int R

Constructor Parameter Parameter-Type
JxfsCashType kind int
 currencyCode JxfsCurrencyCode
 value int
 variant int

Method Return
getProperty Property

4.2.7.3 Properties

4.2.7.3.1 kind (R)

Type int
Remarks The type of the value, a note or a coin.
 One of the following values:

JXFS_C_CDR_CURR_BILL
JXFS_C_CDR_CURR_COIN

4.2.7.3.2 currencyCode (R)

Type JxfsCurrencyCode
Remarks Defines the currency code for this type of cash.

4.2.7.3.3 value (R)

Type int
Remarks Value of cash items expressed in MDUs.

4.2.7.3.4 variant (R)

Type int
Remarks The variant of the cash item represented.
 The constant JXFS_C_CDR_NO_VARIANT may be used to express

that the variant information is not supported. Other values may be
vendor specific.

CWA 16008-5:2009 (E)

81

4.2.8 JxfsCashUnit

4.2.8.1 Usage

Information about the status and contents of the logical and physical cash units. Each logical
bill or coin type cash unit can be composed of one or more physical cash units. All counters are
pure software counters. Due to this fact these values can differ from the actual physical cash
counts.

4.2.8.2 Summary

Extends Implements
JxfsType

Property Type Access
rejectCount int RW

Constructor Parameter Parameter-Type
JxfsCashUnit rejectCount int

Method Return
getProperty Property
setProperty void
addLogicalUnit boolean
getLogicalUnits java.util.Vector

4.2.8.3 Properties

4.2.8.3.1 rejectCount (RW)

Type int
Remarks Counter for all reject actions in the device.

4.2.8.4 Methods

4.2.8.4.1 addLogicalUnit

Syntax boolean addLogicalUnit(JxfsLogicalCashUnit logicalCashUnit)
Remarks Add a logical cash unit.
Parameter Type Name Description
 JxfsLogicalCashUnit logicalCashUnit Add a logical cash

unit to the internal list
of cash units.

4.2.8.4.2 getLogicalUnits

Syntax java.util.Vector getLogicalUnits()
Remarks Returns vector of JxfsLogicalCashUnit.

CWA 16008-5:2009 (E)

82

4.2.9 JxfsCurrency

4.2.9.1 Usage

Objects of this class are used to define a supported currency. Each currency has a currency
identifier (a three character code) and a currency exponent.

4.2.9.2 Summary

Extends Implements
JxfsType

Property Type Access
currencyCode JxfsCurrencyCode R
exponent int R

Constructor Parameter Parameter-Type
JxfsCurrency currencyCode JxfsCurrencyCode
 exponent int

Method Return
getProperty Property

4.2.9.3 Properties

4.2.9.3.1 currencyCode (R)

Type JxfsCurrencyCode
Remarks A 3-character length upper case string detailing a currency code as

defined by the ISO standard, ISO 4217.

4.2.9.3.2 exponent (R)

Type int
Remarks JxfsCurrency exponent.

CWA 16008-5:2009 (E)

83

4.2.10 JxfsCurrencyCode

4.2.10.1 Usage

Used to specify the country specific code (3-character string) for a given currency.

4.2.10.2 Summary

Extends Implements
JxfsType

Property Type Access
currencyCode java.lang.String R

Constructor Parameter Parameter-Type
JxfsCurrencyCode currencyCode String

Method Return
getProperty Property

4.2.10.3 Properties

4.2.10.3.1 currencyCode (R)

Type java.lang.String
Remarks A 3-character length upper case string detailing a currency code as

defined by the ISO standard, ISO 4217.

CWA 16008-5:2009 (E)

84

4.2.11 JxfsDelay

4.2.11.1 Usage

A JxfsDelay object stores the time the opening of the safedoor is delayed.

4.2.11.2 Summary

Extends Implements
JxfsType

Property Type Access
delay int R

Constructor Parameter Parameter-Type
JxfsDelay delay int

Method Return
getProperty Property

4.2.11.3 Properties

4.2.11.3.1 delay (R)

Type int
Remarks Specifies the time to delay in milliseconds.

CWA 16008-5:2009 (E)

85

4.2.12 JxfsDenomination

4.2.12.1 Usage

The JxfsDenomination holds a collection of JxfsDenominationItems that sum up to an amount
of cash.

4.2.12.2 Summary

Extends Implements
JxfsType

Property Type Access
items java.lang.Vector RW
amount long RW
cashBox long RW

Constructor Parameter Parameter-Type
JxfsDenomination items java.lang.Vector
 amount long
 cashBox long

Method Return
getProperty Property
setProperty void
addItem boolean

4.2.12.3 Properties

4.2.12.3.1 items (RW)

Type java.lang.Vector
Remarks A list of JxfsDenominationItems.
Note for
denominate

These items define the asset used for denominate.

4.2.12.3.2 amount (RW)

Type long
Remarks Amount expressed in MDUs.
Note for
denominate

This is the amount to be denominated.

4.2.12.3.3 cashBox (RW)

Type long
Remarks Cashbox amount expressed in MDUs.
Note for
denominate

On return of the denominate-operation, this defines an amount, that
could not be denominated.

CWA 16008-5:2009 (E)

86

4.2.12.4 Methods

4.2.12.4.1 addItem

Syntax boolean addItem(JxfsDenominationItem item)
Remarks Add a JxfsDenominationItem to this denomination.
Parameter Type Name
 JxfsDenominationItem item

JxfsDenominationInfo

4.2.12.5 Usage
The JxfsDenominationInfo object holds the validation settings for a given denomination or
cash type.

4.2.12.6 Summary
Extends Implements
JxfsType

Property Type Access
cashType JxfsCashType R
enableDenomination boolean RW
enableDenominationDispe
nse

boolean RW

Constructor#1 Parameter Parameter-Type
JxfsDenominationInfo cashType JxfsCashType
 enableDenomination boolean

Constructor#2 Parameter Parameter-Type
JxfsDenominationInfo cashType JxfsCashType
 enableDenomination boolean
 enableDenominationDispense boolean

Method Return
getProperty Property
setProperty void
isProperty boolean

4.2.12.7 Properties:

4.2.12.7.1 cashType (R)
Type JxfsCashType
Remarks Specifies the details of the denomination, which is being informed in

this JxfsDenominationInfo structure.

4.2.12.7.2 enableDenomination (R/W)
Type boolean
Remarks Specifies if the denomination is enabled (accepted by the BIM) or not.

4.2.12.7.3 enableDenominationDispense (R/W)
Type boolean
Remarks Specifies if the denomination is enabled for cash-out or not.

CWA 16008-5:2009 (E)

87

4.2.12.8 Constructors

4.2.12.8.1 JxfsDenominationInfo

Syntax public JxfsDenominationInfo(JxfsCashType cashType,boolean
enableDenomination) throws JxfsException

Remarks enableDenominationDispense will be set to true.
Exceptions No additional exceptions are generated by this constructor.

4.2.12.8.2 JxfsDenominationInfo

Syntax public JxfsDenominationInfo(JxfsCashType cashType,boolean
enableDenomination, boolean enableDenominationDispense) throws
JxfsException

Remarks
Exceptions No additional exceptions are generated by this constructor.

4.2.13 JxfsDenominationItem

4.2.13.1 Usage

A JxfsDenominationItem specifies a logical cash unit and the number of bills or coins that were
dispensed from this unit or that should be deposited into this unit.

4.2.13.2 Summary

Extends Implements
JxfsType

Property Type Access
unit int R
count int R

Constructor Parameter Parameter-Type
JxfsDenominationItem unit int
 count int

Method Return
getProperty Property

4.2.13.3 Properties

4.2.13.3.1 unit (R)

Type int
Remarks Number of logical cash unit.

4.2.13.3.2 count (R)

Type int
Remarks Number of bills/coins to dispense/deposit.

CWA 16008-5:2009 (E)

88

4.2.14 JxfsDispenseOrder

4.2.14.1 Usage

This class specifies all data required for dispense, dispenseExec, queryOrder and removeOrder
operations.

4.2.14.2 Summary

Extends Implements
JxfsType

Property Type Access
orderID int RW
queueID int RW
denomination JxfsDenomination RW
currency JxfsCurrency RW
when java.util.Date RW
delay long RW
position int RW

Constructor Parameter Parameter-Type
JxfsDispenseOrder orderID int
 queueID int
 denomination JxfsDenomination
 currency JxfsCurrency
 when java.util.Date
 delay long
 position int

Method Return
getProperty Property
setProperty void

4.2.14.3 Properties

4.2.14.3.1 orderID (RW)

Type int
Remarks Used to identify a dispense order.

4.2.14.3.2 queueID (RW)

Type int
Remarks Specifies the queue the dispense order was inserted in.
 One of the following values: (UVV Delayed Order Queue codes)
 JXFS_C_CDR_DO_DELAYED

JXFS_C_CDR_DO_DISPENSABLE
JXFS_C_CDR_DO_LAQ
JXFS_C_CDR_DO_NONE

4.2.14.3.3 denomination (RW)

Type JxfsDenomination
Remarks Specifies the amount of cash to dispense.

CWA 16008-5:2009 (E)

89

4.2.14.3.4 currency (RW)

Type JxfsCurrency
Remarks Specifies the currency to use.

4.2.14.3.5 when (RW)

Type java.util.Date
Remarks Time the operation was requested.

4.2.14.3.6 delay (RW)

Type long
Remarks Delay in ms from when.
 If delay equals 0, then the dispense order was processed immediately,

else, if delay is greater 0, then the order is delayed for delay
milliseconds.

4.2.14.3.7 position (RW)

Type int
Remarks Specifies the output position to use for presenting money.
 One of the following values:
 JXFS_C_CDR_POS_NONE
 JXFS_C_CDR_POS_DEFAULT
 JXFS_C_CDR_POS_LEFT
 JXFS_C_CDR_POS_CENTER
 JXFS_C_CDR_POS_RIGHT
 JXFS_C_CDR_POS_TOP
 JXFS_C_CDR_POS_BOTTOM
 JXFS_C_CDR_POS_FRONT
 JXFS_C_CDR_POS_REAR

CWA 16008-5:2009 (E)

90

4.2.15 JxfsDispenseRequest

4.2.15.1 Usage

This class specifies all data required for a dispense or an empty operation.

4.2.15.2 Summary

Extends Implements
JxfsType

Property Type Access
mixNumber int RW
denomination JxfsDenomination RW
currency JxfsCurrency RW
position int RW

Constructor Parameter Parameter-Type
JxfsDispenseRequest mixNumber int
 denomination JxfsDenomination
 currency JxfsCurrency
 position int

Method Return
getProperty Property
setProperty void

4.2.15.3 Properties

4.2.15.3.1 mixNumber (RW)

Type int
Remarks Specifies kind of mixing.

4.2.15.3.2 denomination (RW)

Type JxfsDenomination
Remarks Specifies the amount of cash to dispense.

4.2.15.3.3 currency (RW)

Type JxfsCurrency
Remarks Specifies the currency to use.

4.2.15.3.4 position (RW)

Type int
Remarks Specifies the output position to use for presenting money.
 Same values as in JxfsDispenseOrder

CWA 16008-5:2009 (E)

91

4.2.16 JxfsEurArt6Capability

4.2.16.1 Usage
Used to query the capability of the device to handle the european article 6 rules.

4.2.16.2 Summary

Extends Implements
JxfsType

Property Type Access
category2 boolean R
category3 boolean R
unfit boolean R

Constructor Parameter Parameter-Type
JxfsEurArt6Capability category2 boolean
 category3 boolean
 unfit boolean

Method Return
isProperty boolean

4.2.16.3 Properties

4.2.16.3.1 category2 (R)

Type boolean
Remarks Specifies if the cash recycler is able to sort category 2 notes and store

them separately.

4.2.16.3.2 category3 (R)

Type boolean
Remarks Specifies if the cash recycler is able to sort category 3 notes and store

them separately.

4.2.16.3.3 unfit (R)

Type boolean
Remarks Specifies if the cash recycler is able to sort unfit notes from category 3

notes and store them separately.
The unfit notes are notes that are detected as genuine notes but due to
the poor quality they are not allowed to be in circulation. European
article 6 mandates to handle these notes as category3 notes.

CWA 16008-5:2009 (E)

92

4.2.17 JxfsLogicalCashUnit

4.2.17.1 Usage

Logical information about a cash unit. Each logical unit can be composed of multiple
physical units.

4.2.17.2 Summary

Extends Implements
JxfsType

Property Type Access
cashType JxfsCashType RW
number int RW
cuKind int RW
cuType int RW
unitID java.lang.String RW
initialCount int RW
count int RW
threshold JxfsThreshold RW
appLock boolean RW
devLock boolean RW
status int RW
thresholdStatus JxfsThresholdStatus RW
physicalName java.lang.String RW
physicalUnits java.util.Vector RW
depositCount int RW
dispenseCount int RW
rejectCount int RW
containedCategories JxfsCDRArt6Categories RW

Constructor #1 Parameter Parameter-Type
JxfsLogicalCashUnit cashType JxfsCashType
 number int
 cuKind int
 cuType int
 unitID java.lang.String
 initialCount int
 count int
 threshold JxfsThreshold
 appLock boolean
 devLock boolean
 status int
 thresholdStatus JxfsThresholdStatus
 physicalName java.lang.String
 physicalUnits java.util.Vector
 depositCount int
 dispenseCount int
 rejectCount int

CWA 16008-5:2009 (E)

93

Constructor #2 Parameter Parameter-Type
JxfsLogicalCashUnit cashType JxfsCashType
 number int
 cuKind int
 cuType int
 unitID java.lang.String
 initialCount int
 count int
 threshold JxfsThreshold
 appLock boolean
 devLock boolean
 status int
 thresholdStatus JxfsThresholdStatus
 physicalName java.lang.String
 physicalUnits java.util.Vector
 depositCount int
 dispenseCount int
 rejectCount int
 containedCategories JxfsCDRArt6Categori

es

Method Return
getProperty Property
setProperty void
isProperty boolean
addUnit boolean

CWA 16008-5:2009 (E)

94

4.2.17.3 Properties

4.2.17.3.1 cashType (RW)

Type JxfsCashType
Remarks Defines the type of cash used by this cash unit.

4.2.17.3.2 number (RW)

Type int
Remarks Logical number of cash unit.
 Unique number of the cash unit. Once this number is assigned, it

identifies the unit along the time; therefore, it can be used to track unit
changes, or uniquely reference units in method calls
(JxfsDenominationItem unit property is an example).

4.2.17.3.3 cuKind (RW)

Type int
Remarks Specifies, if cash unit can dispense, deposit cash or both.
 One of the following values:

JXFS_C_CDR_LCU_NA
JXFS_C_CDR_LCU_DEPOSIT
JXFS_C_CDR_LCU_DISPENSE
JXFS_C_CDR_LCU_RECYCLE

4.2.17.3.4 cuType (RW)

Type int
Remarks Type of cash unit.
 One of the following values:
 JXFS_C_CDR_LCU_BAIT_TRAP
 JXFS_C_CDR_LCU_BILL_CASSETTE
 JXFS_C_CDR_LCU_COIN_CYLINDER
 JXFS_C_CDR_LCU_COIN_DISPENSER
 JXFS_C_CDR_LCU_COUPON
 JXFS_C_CDR_LCU_CURRENCY_CASSETTE
 JXFS_C_CDR_LCU_DOCUMENT
 JXFS_C_CDR_LCU_ESCROW
 JXFS_C_CDR_LCU_NA
 JXFS_C_CDR_LCU_OVERFLOW_CASSETTE
 JXFS_C_CDR_LCU_REJECT_CASSETTE
 JXFS_C_CDR_LCU_RETRACT_CASSETTE

4.2.17.3.5 unitID (RW)

Type java.lang.String
Remarks Identification value for a cash unit.

CWA 16008-5:2009 (E)

95

4.2.17.3.6 initialCount (RW)

Type int
Remarks This property represents the sum of all counts in JxfsPhysicalCashUnits

attached to this JxfsLogicalCashUnit.
 This value is persistent on power failure, open, close and system reset. It

is set during endExchange and updateCashUnit and not modified during
any other operation.

4.2.17.3.7 count (RW)

Type int
Remarks This property represents the sum of all count fields in

JxfsPhysicalCashUnits attached to this JxfsLogicalCashUnit.
 This value is persistent on power failure, open, close and system reset. It

is set during endExchange and updateCashUnit. It will be adjusted by
dispense or deposit actions.

Note If this is a reject cassette, this value gives the number of rejected notes
or coins.
If this is a retract cassette, this value gives the numbers of retracted notes
or coins.

4.2.17.3.8 threshold (RW)

Type JxfsThreshold
Remarks Identifies the software based threshold levels for this logical unit. These

levels are compared with the count of the logical unit to evaluate the
thresholdStatus.
The following rules are applied:

• If count >= full, it is considered full.
• If full>count>=high, it is considered high.
• If low>=count>empty, it is considered low.
• If empty>=count, it is considered empty.

Otherwise, it is considered ok.

4.2.17.3.9 appLock (RW)

Type boolean
Remarks If set to true, the cash unit is locked by the application and can not be

used until unlocked by the application.
If appLock is set for a logical cash unit, then it must also have been set
for all containing physical cash units.

4.2.17.3.10 devLock (RW)

Type boolean
Remarks If set to true, the cash unit is locked by the device and can not be used

until unlocked by the device service.
If devLock is set for a logical cash unit, then it must also have been set
for all containing physical cash units.

CWA 16008-5:2009 (E)

96

4.2.17.3.11 status (RW)

Type int
Remarks Cash unit status.

If all physical cash units are OK, the logical cash unit must also set this
property to JXFS_C_CDR:LCU_OK. In all other cases the
JxfsLogicalCashUnit.status should be set to the value with highest
priority of the containing JxfsPhysicalCashUnit.status properties.

 One of the following values:
JXFS_C_CDR_LCU_INOP
JXFS_C_CDR_LCU_MISSING
JXFS_C_CDR_LCU_NO_VALUE
JXFS_C_CDR_LCU_NO_REF
JXFS_C_CDR_LCU_NOT_DISPENSEABLE
JXFS_C_CDR_LCU_OK
JXFS_C_CDR_LCU_UNKNOWN

4.2.17.3.12 thresholdStatus (RW)

Type JxfsThresholdStatus
Remarks Specifies the current threshold status as calculated by the device service

using the JxfsLogicalCashUnit.threshold and
JxfsLogicalCashUnit.count properties.

4.2.17.3.13 physicalName (RW)

Type java.lang.String
Remarks Name of the physical location of the cash unit in the dispenser device.

This field is only used when logical unit equals physical unit.

4.2.17.3.14 physicalUnits (RW)

Type java.util.Vector
Remarks Return vector of JxfsPhysicalCashUnit.

4.2.17.3.15 depositCount (RW)

Type int
Remarks Number of bills, that were deposited.

4.2.17.3.16 dispenseCount (RW)

Type int
Remarks Number of items from this logical unit which have been presented to the

customer.
This count will include items retracted from a customer accessible position,
using the retract method, but will not include items which have not been
accessible to a customer and are retained from a location within the device
using the reject or reset methods.
This value is persistent on power failure, open, close and system reset. It is
initialized by the endExchange and updateCashUnit methods.

CWA 16008-5:2009 (E)

97

4.2.17.3.17 rejectCount (RW)

Type int
Remarks Count of items from this logical unit that have been rejected during any

operation which handles items originating from this logical unit.
Note: Due to the fact that the most common cause of items being
rejected is that they are stuck together, this count cannot be guaranteed
to be accurate.
This value is persistent on power failure, open, close and system reset. It is
initialized by the endExchange and updateCashUnit methods and
updated during any operation which results in items, which have not
been accessible to a customer, being rejected.

4.2.17.3.18 containedCategories (RW)

Type JxfsCDRArt6Categories
Remarks Specifies the categories of notes held by this logical cash unit according

to the ECB6 rules.
This property is equal to the default JxfsCDRArt6Categories if cuType
equals JXFS_C_CDR_LCU_COIN_CYLINDER,
JXFS_C_CDR_LCU_COIN_DISPENSER,
JXFS_C_CDR_LCU_COUPON, JXFS_C_CDR_LCU_DOCUMENT
or JXFS_C_CDR_LCU_ESCROW.
See class JxfsCDRArt6Categories description for details on how to
structure the LCUs.

4.2.17.4 Methods

4.2.17.4.1 addUnit

Syntax boolean addUnit(JxfsPhysicalCashUnit unit)
Remarks Add a JxfsPhysicalCashUnit to this logical cash unit.
Parameter Type Name
 JxfsPhysicalCashUnit unit

4.2.17.5 Constructors

4.2.17.5.1 JxfsLogicalCashUnit

Syntax public JxfsLogicalCashUnit(JxfsCashType cashType, int number, int
cuKind, int cuType, java.lang.String unitID, int initialCount, int count,
JxfsThreshold threshold, boolean appLock, boolean devLock, int status,
JxfsThresholdStatus thresholdStatus, java.lang.String physicalName,
java.util.Vector physicalUnits, int depositCount, int dispenseCount, int
rejectCount) throws JxfsException

Remarks containedCategories will be set to the default JxfsCDRArt6Categories class.
Exceptions No additional exceptions are generated by this constructor.

CWA 16008-5:2009 (E)

98

4.2.17.5.2 JxfsLogicalCashUnit

Syntax public JxfsLogicalCashUnit(JxfsCashType cashType, int number, int
cuKind, int cuType, java.lang.String unitID, int initialCount, int count,
JxfsThreshold threshold, boolean appLock, boolean devLock, int status,
JxfsThresholdStatus thresholdStatus, java.lang.String physicalName,
java.util.Vector physicalUnits, int depositCount, int dispenseCount, int
rejectCount, JxfsCDRArt6Categories containedCategories) throws
JxfsException

Remarks
Exceptions Exceptions, which can be generated by this method.
 JXFS_E_PARAMETER_INVALID Generated if one of the following

cases applies:
- containedCategories is a null
reference

CWA 16008-5:2009 (E)

99

4.2.18 JxfsMixEntry

4.2.18.1 Usage

One entry in a JxfsMixItem. It contains a reference to the logical cash unit and the number of
bills/coins used in mixing.

4.2.18.2 Summary

Extends Implements
JxfsType

Property Type Access
lcu int R
count int R

Constructor Parameter Parameter-Type
JxfsMixEntry lcu int
 count int

Method Return
getProperty Property

4.2.18.3 Properties

4.2.18.3.1 lcu (R)

Type int
Remarks Number of logical cash unit.

4.2.18.3.2 count (R)

Type int
Remarks Number of bills or coins.

CWA 16008-5:2009 (E)

100

4.2.19 JxfsMixInfo

4.2.19.1 Usage

Type for identifying mix algorithms and/or house mix tables.

4.2.19.2 Summary

Extends Implements
JxfsType

Property Type Access
number int R
mixType int R
mixAlgorithmType int R
name java.lang.String R

Constructor Parameter Parameter-Type
JxfsMixInfo number int
 mixType int
 mixAlgorithmType int
 name java.lang.String

Method Return
getProperty Property

4.2.19.3 Properties

4.2.19.3.1 number (R)

Type int
Remarks Number of this mixtype item.

4.2.19.3.2 mixType (R)

Type int
Remarks Specifies that an algorithm or a mix table should be used.
 One of the following values:

JXFS_C_CDR_MIX_ALGORITHM
JXFS_C_CDR_MIX_TABLE
JXFS_C_CDR_MIX_DENOM

4.2.19.3.3 mixAlgorithmType (R)

Type int
Remarks This selects the type of algorithm or mix table.
 One of the following values:
 JXFS_C_CDR_MXA_MIN_BILLS

JXFS_C_CDR_MXA_EQUAL_EMPTY

4.2.19.3.4 name (R)

Type java.lang.String
Remarks Name of algorithm or mix table.

CWA 16008-5:2009 (E)

101

4.2.20 JxfsMixItem

4.2.20.1 Usage

Specifies an amount used in a JxfsMixTable (in Minimum Dispense Units, MDU). It also
contains a list of entries that specify the logical cash units and the number of bills/coins used.

4.2.20.2 Summary

Extends Implements
JxfsType

Property Type Access
amount long RW
entries java.util.Vector RW

Constructor Parameter Parameter-Type
JxfsMixItem amount long
 entries Vector

Method Return
getProperty Property
setProperty void

4.2.20.3 Properties

4.2.20.3.1 amount (RW)

Type long
Remarks Amount used in the mix table in MDUs.

4.2.20.3.2 entries (RW)

Type java.util.Vector of JxfsMixEntry
Remarks List of JxfsMixEntry.

CWA 16008-5:2009 (E)

102

4.2.21 JxfsMixTable

4.2.21.1 Usage

Contains complete description of a mix table.

4.2.21.2 Summary

Extends Implements
JxfsType

Property Type Access
mixInfo JxfsMixInfo RW
items java.util.Vector RW

Constructor Parameter Parameter-Type
JxfsMixTable mixInfo JxfsMixInfo
 items java.util.Vector

Method Return
getProperty Property
setProperty void

4.2.21.3 Properties

4.2.21.3.1 mixInfo (RW)

Type JxfsMixInfo
Remarks Identification of mix table.

4.2.21.3.2 items (RW)

Type java.util.Vector of JxfsMixItem
Remarks Specifies amounts used in the JxfsMixTable.

CWA 16008-5:2009 (E)

103

4.2.22 JxfsPhysicalCashUnit

4.2.22.1 Usage

Information about a physical cash unit.

4.2.22.2 Summary

Extends Implements
JxfsType

Property Type Access
name java.lang.String R
unitID java.lang.String R
count int R
threshold JxfsThreshold R
status int R
thresholdStatus JxfsThresholdStatus R
lock boolean R
configuredCategories JxfsCDRArt6Categories R

Constructor #1 Parameter Parameter-Type
JxfsPhysicalCashUnit name java.lang.String
 unitID java.lang.String
 count int
 threshold JxfsThreshold
 status int
 thresholdStatus JxfsThresholdStatus
 lock boolean

Constructor #2 Parameter Parameter-Type
JxfsPhysicalCashUnit name java.lang.String
 unitID java.lang.String
 count int
 threshold JxfsThreshold
 status int
 thresholdStatus JxfsThresholdStatus
 lock boolean
 configuredCategories JxfsCDRArt6Categori

es

Method Return
getProperty Property
isProperty boolean

4.2.22.3 Properties

4.2.22.3.1 name (R)

Type java.lang.String
Remarks Name of the physical location in the dispenser device where this cash

unit is installed.

CWA 16008-5:2009 (E)

104

4.2.22.3.2 unitID (R)

Type java.lang.String
Remarks Cash unit ID.

4.2.22.3.3 count (R)

Type int
Remarks Actual count of bills or coins in the physical cash unit.

CWA 16008-5:2009 (E)

105

4.2.22.3.4 threshold (R)

Type JxfsThreshold
Remarks Provides the best estimation for the hardware based threshold levels for

this physical unit. If a threshold status cannot be detected by the device,
the corresponding level will be returned as -1. Notice that detectable
levels have following relationship: full >= high >= low >= empty >= 0.

4.2.22.3.5 status (R)

Type int
Remarks Status of the physical cash unit.
 May have the same range of values as LogicalCashUnit.status.

4.2.22.3.6 thresholdStatus (R)

Type JxfsThresholdStatus
Remarks Thresholdstatus of the physical cash unit.

4.2.22.3.7 lock (R)

Type boolean
Remarks Lock status of the physical cash unit.
 Can be used from application and device service. Usually used for hot

swap of cassettes.

4.2.22.3.8 configuredCategories (R)

Type JxfsCDRArt6Categories
Remarks Specifies, which article 6 categories this PCU is able to accept.

In case of setting this property: If the device service does not support the
specified category combination it sets this property to the most probable
wanted possible combination.
Some devices that are capable of configuring the categories for a cash
unit require that this unit is physically empty prior to setting this
property.

CWA 16008-5:2009 (E)

106

4.2.22.4 Constructors

4.2.22.4.1 JxfsPhysicalCashUnit

Syntax public JxfsPhysicalCashUnit(java.lang.String name, java.lang.String
unitID, int count, JxfsThreshold threshold, int status, JxfsThresholdStatus
thresholdStatus, boolean lock) throws JxfsException

Remarks configuredCategories will be set to the default JxfsCDRArt6Categories class.
Exceptions No additional exceptions are generated by this constructor.

4.2.22.4.2 JxfsPhysicalCashUnit

Syntax public JxfsPhysicalCashUnit(java.lang.String name, java.lang.String
unitID, int count, JxfsThreshold threshold, int status, JxfsThresholdStatus
thresholdStatus, boolean lock, JxfsCDRArt6Categories
configuredCategories) throws JxfsException

Remarks
Exceptions Exceptions, which can be generated by this method.
 JXFS_E_PARAMETER_INVALID Generated if one of the following

cases applies:
- configuredCategories is a null
reference

CWA 16008-5:2009 (E)

107

4.2.23 JxfsRetractArea

4.2.23.1 Usage

Information about areas where to retract cash items that may have been in customer access.

4.2.23.2 Summary

Extends Implements
JxfsType

Property Type Access
outputPosition int R
retractArea int R
logicalPosition int R

Constructor Parameter Parameter-Type
JxfsRetractArea outputPosition int
 retractArea int
 logicalPosition int

Method Return
getProperty Property

4.2.23.3 Properties

4.2.23.3.1 outputPosition (R)

Type int
Remarks Specifies the output position from which to retract bills.
 One of the following values:
 JXFS_C_CDR_POS_NONE
 JXFS_C_CDR_POS_DEFAULT
 JXFS_C_CDR_POS_LEFT
 JXFS_C_CDR_POS_CENTER
 JXFS_C_CDR_POS_RIGHT
 JXFS_C_CDR_POS_TOP
 JXFS_C_CDR_POS_BOTTOM
 JXFS_C_CDR_POS_FRONT
 JXFS_C_CDR_POS_REAR

4.2.23.3.2 retractArea (R)

Type int
Remarks Specifies the area to which the bills are to be retracted.
 One of the following values:
 JXFS_C_CDR_RA_REJECT
 JXFS_C_CDR_RA_RETRACT
 JXFS_C_CDR_RA_STACKER
 JXFS_C_CDR_RA_TRANSPORT

CWA 16008-5:2009 (E)

108

4.2.23.3.3 logicalPosition (R)

Type int
Remarks If retractArea is set to JXFS_C_CDR_RA_RETRACT this field is the

logical retract position inside the container into which cash is to be
retracted, otherwise this field is ignored.
Logical positions start with a value of one (1).

CWA 16008-5:2009 (E)

109

4.2.24 JxfsThreshold

4.2.24.1 Usage

Defines limits for cassettes.

4.2.24.2 Summary

Extends Implements
JxfsType

Property Type Access
full int R
high int R
low int R
empty int R

Constructor Parameter Parameter-Type
JxfsThreshold full int
 high int
 low int
 empty int

Method Return
getProperty Property

4.2.24.3 Properties

4.2.24.3.1 full (R)

Type int
Remarks Specifies the full level for the cash unit

4.2.24.3.2 high (R)

Type int
Remarks Specifies the high level for the cash unit.

4.2.24.3.3 low (R)

Type int
Remarks Specifies the low level for the cash unit.

4.2.24.3.4 empty (R)

Type int
Remarks Specifies the empty level for the cash unit.

CWA 16008-5:2009 (E)

110

4.2.25 JxfsCashUnitTestError

4.2.25.1 Usage

Information about cash units which failed when a test dispense was attempted.

4.2.25.2 Summary

Extends Implements
JxfsType

Property Type Access
cashUnit JxfsPhysicalCashUnit R
error int R

Constructor Parameter Parameter-Type
JxfsCashUnitTestError cashUnit JxfsPhysicalCashUnit
 error int

Method Return
GetProperty Property

4.2.25.3 Properties

4.2.25.3.1 cashUnit (R)

Type JxfsPhysicalCashUnit
Remarks Specifies the physical cash unit which failed when a test dispense was

attempted.

4.2.25.3.2 error (R)

Type int
Remarks Specifies the error which has resulted when a test dispense failed.
 One of the following values:
 JXFS_E_CDR_EXCHANGE_ACTIVE
 JXFS_E_CDR_ NOT_DISPENSABLE
 JXFS_E_CDR_NO_BILLS
 JXFS_E_CDR_UNABLE_MOVE_ SHUTTER
 JXFS_E_CDR_UNIT_LOCKED
 JXFS_E_CDR_UNIT_FULL
 JXFS_E_CDR_CASH_DEVICE_ERROR

CWA 16008-5:2009 (E)

111

4.2.26 JxfsCDRArt6Categories

4.2.26.1 Usage
Used in JxfsLogicalCashUnit class to indicate the categories of notes held by the logical
cash unit. The corresponding flag is set to false if no banknote of the specified category is
present in the LCU.

There are two options for representing existance of categories in an LCU:

• per Unit
This class indicates which categories are present in the LCU per cuType. All
LCUs with the same cuType value must reference the same
JxfsCDRArt6Categories values. A typical usage scenario is after deplenishing the
unit as the existance of some categories define the further processing of the
contents.

• per cashType

This class reports definite counters per category per cuType per CashType. For
each possible category according to the PCU's configuration a single LCU must
exist. Using this option may easily lead to very large cash units.

Used in JxfsPhysicalCashUnit class to indicate the configured categories of notes that can
be held by the physical cash unit. This class may be used to configure the categories to be
stored in a PCU if this feature is configurable in the device.

An application should be aware of the possible combinations of the categories in the LCUs
and PCUs.

Example #1 (categories per Unit):

We have one PCU that is linked to 5 LCUs (1 for reject, the other 4 for deposit). The PCU
received rejected banknotes from a dispense operation and category 3/4a/4b banknotes
from a cash-in operation. The device supports fit/unfit categorization.

property PCU LCU

(REJECT_CASSETTE)
LCU
(BILL_CASSETTE)

supported true true true
precision perUnit perUnit perUnit
category1 false false false
category2 false false false
category3 true false true
category4 false false false
category4a true true true
category4b true true true

An example of this configuration may look like the following model (not relevant
properties are suppressed) that shows an extract of a cash unit.

CWA 16008-5:2009 (E)

112

count:int = 14

physicalUnits:JxfsPhysicalCashUnit

number:int = 1
cuKind:int = JXFS_C_CDR_LCU_DEPOSIT
cuType:int = JXFS_C_CDR_LCU_REJECT_CASSETTE
initialCount:int = 0
count:int = 7
depositCount:int = 0
dispenseCount:int = 0
rejectCount:int = 0

:JxfsLogicalCashUnit

kind:int=JXFS_C_CDR_CURR_BILL
value:long=500
variant:int=0
currencyCode:JxfsCurrencyCode=EUR

cashType:JxfsCashType

supported:boolean=true
precision:JxfsCDRPrecisionEnum=perUnit
category1:boolean=false
category2:boolean=false
category3:boolean=false
category4:boolean=false
category4a:boolean=true
category4b:boolean=true

containedCategories:JxfsCDRArt6Categories

number:int = 2
cuKind:int = JXFS_C_CDR_LCU_DEPOSIT
cuType:int = JXFS_C_CDR_LCU_BILL_CASSETTE
initialCount:int = 0
count:int = 0
depositCount:int = 0
dispenseCount:int = 0
rejectCount:int = 0

:JxfsLogicalCashUnit

supported:boolean=true
precision:JxfsCDRPrecisionEnum=perUnit
category1:boolean=false
category2:boolean=false
category3:boolean=true
category4:boolean=false
category4a:boolean=true
category4b:boolean=true

containedCategories:JxfsCDRArt6Categories

number:int = 3
cuKind:int = JXFS_C_CDR_LCU_DEPOSIT
cuType:int = JXFS_C_CDR_LCU_BILL_CASSETTE
initialCount:int = 0
count:int = 4
depositCount:int = 4
dispenseCount:int = 0
rejectCount:int = 0

:JxfsLogicalCashUnit

number:int = 4
cuKind:int = JXFS_C_CDR_LCU_DEPOSIT
cuType:int = JXFS_C_CDR_LCU_BILL_CASSETTE
initialCount:int = 0
count:int = 0
depositCount:int = 0
dispenseCount:int = 0
rejectCount:int = 0

:JxfsLogicalCashUnit

number:int = 5
cuKind:int = JXFS_C_CDR_LCU_DEPOSIT
cuType:int = JXFS_C_CDR_LCU_BILL_CASSETTE
initialCount:int = 0
count:int = 3
depositCount:int = 3
dispenseCount:int = 0
rejectCount:int = 0

:JxfsLogicalCashUnit

kind:int=JXFS_C_CDR_CURR_BILL
value:long=1000
variant:int=0
currencyCode:JxfsCurrencyCode=EUR

cashType:JxfsCashType

kind:int=JXFS_C_CDR_CURR_BILL
value:long=2000
variant:int=0
currencyCode:JxfsCurrencyCode=EUR

cashType:JxfsCashType

kind:int=JXFS_C_CDR_CURR_BILL
value:long=5000
variant:int=0
currencyCode:JxfsCurrencyCode=EUR

cashType:JxfsCashType

supported:boolean=true
precision:JxfsCDRPrecisionEnum=perUnit
category1:boolean=false
category2:boolean=false
category3:boolean=true
category4:boolean=false
category4a:boolean=true
category4b:boolean=true

configuredCategories:JxfsCDRArt6Categories

kind:int=JXFS_C_CDR_CURR_BILL
value:long=0
variant:int=JXFS_C_CDR_NO_VARIANT
currencyCode:JxfsCurrencyCode=""

cashType:JxfsCashType

CWA 16008-5:2009 (E)

113

Example #2 (LCU counters per category per cashType per cuType):

We have one PCU that is configured to store 50 EUR banknotes either category 3, category
4a or category 4b. The device supports fit/unfit categorization.

property PCU LCU #1

(BILL_CASSETTE)
LCU #2
(BILL_CASSETTE)

LCU #3
(BILL_CASSETTE)

supported true true true true
precision perCategory perCategory perCategory perCategory
category1 false false false false
category2 false false false false
category3 true true false false
category4 false false false false
category4a true false true false
category4b true false false true

An example of this configuration may look like the following model (not relevant
properties are suppressed) that shows an extract of a cash unit.

CWA 16008-5:2009 (E)

114

count:int = 6

physicalUnits:JxfsPhysicalCashUnit

kind:int=JXFS_C_CDR_CURR_BILL
value:long=5000
variant:int=0
currencyCode:JxfsCurrencyCode=EUR

cashType:JxfsCashType

supported:boolean=true
precision:JxfsCDRPrecisionEnum=perCashType
category1:boolean=false
category2:boolean=false
category3:boolean=true
category4:boolean=false
category4a:boolean=false
category4b:boolean=false

containedCategories:JxfsCDRArt6Categories

number:int = 1
cuKind:int = JXFS_C_CDR_LCU_DEPOSIT
cuType:int = JXFS_C_CDR_LCU_BILL_CASSETTE
initialCount:int = 0
count:int = 0
depositCount:int = 0
dispenseCount:int = 0
rejectCount:int = 0

:JxfsLogicalCashUnit

supported:boolean=true
precision:JxfsCDRPrecisionEnum=perCashType
category1:boolean=false
category2:boolean=false
category3:boolean=false
category4:boolean=false
category4a:boolean=true
category4b:boolean=false

containedCategories:JxfsCDRArt6Categories

number:int = 2
cuKind:int = JXFS_C_CDR_LCU_DEPOSIT
cuType:int = JXFS_C_CDR_LCU_BILL_CASSETTE
initialCount:int = 0
count:int = 4
depositCount:int = 4
dispenseCount:int = 0
rejectCount:int = 0

:JxfsLogicalCashUnit

number:int = 3
cuKind:int = JXFS_C_CDR_LCU_DEPOSIT
cuType:int = JXFS_C_CDR_LCU_BILL_CASSETTE
initialCount:int = 0
count:int = 2
depositCount:int = 2
dispenseCount:int = 0
rejectCount:int = 0

:JxfsLogicalCashUnit

supported:boolean=true
precision:JxfsCDRPrecisionEnum=perUnit
category1:boolean=false
category2:boolean=false
category3:boolean=true
category4:boolean=false
category4a:boolean=true
category4b:boolean=true

configuredCategories:JxfsCDRArt6Categories

supported:boolean=true
precision:JxfsCDRPrecisionEnum=perCashType
category1:boolean=false
category2:boolean=false
category3:boolean=false
category4:boolean=false
category4a:boolean=false
category4b:boolean=true

containedCategories:JxfsCDRArt6Categories

CWA 16008-5:2009 (E)

115

4.2.26.2 Summary

Extends Implements
JxfsType

Property Type Access
supported boolean R
precision JxfsCDRPrecisionEnum R
category1 boolean R
category2 boolean R
category3 boolean R
category4 boolean R
category4a boolean R
category4b boolean R

Constructor #1 Parameter Parameter-Type
JxfsCDRArt6Categories no Parameter no Type

Constructor #2 Parameter Parameter-Type
JxfsCDRArt6Categories precision JxfsCDRPrecisionEnum
 category1 boolean
 category2 boolean
 category3 boolean
 category4 boolean
 category4a boolean
 category4b boolean

Method Return
isProperty boolean
getProperty property

4.2.26.3 Properties

4.2.26.3.1 supported (R)

Type boolean
Remarks Specifies, if the categorization applies at all.

All the other properties are set to false, if this property is equal to false.

4.2.26.3.2 precision (R)

Type JxfsCDRPrecisionEnum
Remarks Specifies the precision of the categorization data.

For a PCU the value perUnit is allowed only.
For a LCU the value perUnit indicates that the following flags are meant
globally per cuType per Unit.
For a LCU the value perCashType indicates that there are LCUs for each
possible category per PCU per cuType per cashType.

4.2.26.3.3 category1 (R)

Type boolean
Remarks Specifies that the physical/logical cash unit may contain category1

items.

CWA 16008-5:2009 (E)

116

4.2.26.3.4 category2 (R)

Type boolean
Remarks Specifies that the physical/logical cash unit may contain category2

notes.

4.2.26.3.5 category3 (R)

Type boolean
Remarks Specifies that the physical/logical cash unit may contain category3

notes.
If the machine is not able to distinguish C3 banknotes, this value is
always false.

4.2.26.3.6 category4 (R)

Type boolean
Remarks Specifies that the physical/logical cash unit may contain category4

notes. This should only be used when the validator is unable to identify
the 4a and 4b subcategories

4.2.26.3.7 category4a (R)

Type boolean
Remarks Specifies that the physical/logical cash unit may contain category4a

notes.

4.2.26.3.8 category4b (R)

Type boolean
Remarks Specifies that the physical/logical cash unit may contain category4b

notes.
If the machine is not able to distinguish fit/unit banknotes, this value is
always false.

4.2.26.4 Constructors

4.2.26.4.1 JxfsCDRArt6Categories

Syntax public JxfsCDRArt6Categories() throws JxfsException
Remarks Sets all boolean properties to false. precision will be set to perUnit.
Exceptions No additional exceptions are generated by this constructor.

4.2.26.4.2 JxfsCDRArt6Categories

Syntax public JxfsCDRArt6Categories(JxfsCDRPrecisionEnum precision, boolean
category1, boolean category2, boolean category3, boolean category4,
boolean category4a, boolean category4b) throws JxfsException

Remarks Sets supported to true. The other properties will be set according to the
contructor parameters.

Exceptions No additional exceptions are generated by this constructor.

CWA 16008-5:2009 (E)

117

4.2.27 JxfsCDRCashInStatus

4.2.27.1 Usage

This class contains information about the current cash-in transaction or the last cash-in transaction, if no cash-in
transaction is currently active.

This value is persistent through power failure. It is always reset with cashInStart.

4.2.27.2 Summary

Extends Implements
JxfsType

Property Type Access
cashInStatus JxfsCDRCashInEnum R
acceptedNoteList JxfsArt6CashInOrder R
rollbackItems JxfsArt6CashInOrder R
numOfRefused int R

Constructor Parameter Parameter-Type
JxfsCDRCashInStatus cashInStatus JxfsCDRCashInEnum
 acceptedNoteList JxfsArt6CashInOrder
 rollbackItems JxfsArt6CashInOrder
 numOfRefused int

Method Return
getProperty Property

4.2.27.3 Properties

4.2.27.3.1 cashInStatus

Type JxfsCDRCashInEnum
Remarks Information about the current state of the cash-in transaction.

4.2.27.3.2 acceptedNoteList

Type JxfsArt6CashInOrder
Remarks Accumulated list of all banknotes that have been accepted since the last

cashInStart operation. This list does not contain refused or rolled back
banknotes.

CWA 16008-5:2009 (E)

118

4.2.27.3.3 rollbackItems

Type JxfsArt6CashInOrder
Remarks List of all banknotes that can be rolled back in the current transaction

since cashInStart.
If ECB article 6 applies, this list does not contain category 2 or category
3 banknotes.
A cashInRollback will not necessarily present all banknotes of this list to
the customer as there are devices that require several cashInRollback
operations to return all banknotes.
If this list is not empty a cashInRollback is possible.

4.2.27.3.4 numOfRefused

Type int
Remarks Number of items that have been refused in the current or last cashIn

transaction.
As it is difficult in many cases to give an exact count of items that gave
trouble in accepting, an application should not rely on the exact value of
this property. It is for statistical reason only.
If the number of refused items is not known, the value of this property is
JXFS_C_CDR_REFUSED_UNKNOWN.
This value is accumulating through several subsequent cashIn
operations.

4.2.27.3.5 Constructors

Syntax public JxfsCDRCashInStatus(JxfsCDRCashInEnum cashInStatus,
JxfsArt6CashInOrder acceptedNoteList, JxfsArt6CashInOrder
rollbackItems, int numOfRefused) throws JxfsException

Exceptions Exceptions, which can be generated by this method.
 JXFS_E_PARAMETER_INVALID Generated if one of the following

cases applies:
- cashInStatus is a null reference
- acceptedNoteList is a null reference
- rollbackItems is a null reference
- numOfRefused is negative and not
of the value
JXFS_C_CDR_REFUSED_UNKNO
WN

CWA 16008-5:2009 (E)

119

4.2.28 JxfsCDRCashValue

4.2.28.1 Usage

Used to specify an amount for a given currency.

4.2.28.2 Summary

Extends Implements
JxfsType

Property Type Access
currencyCode JxfsCurrencyCode R
amount long R

Constructor Parameter Parameter-Type
JxfsCurrency currencyCode JxfsCurrencyCode
 amount long

Method Return
getProperty Property

4.2.28.3 Properties

4.2.28.3.1 currencyCode

Type JxfsCurrencyCode
Remarks A 3-character length upper case string detailing a currency code as

defined by the ISO standard, ISO 4217.

4.2.28.3.2 amount

Type long
Remarks Amount in MDUs for this specific currency

CWA 16008-5:2009 (E)

120

4.2.28.4 Constructors

Syntax public JxfsCDRCashValue(JxfsCurrencyCode currencyCode, long amount)
throws JxfsException

Exceptions Exceptions, which can be generated by this method.
 JXFS_E_PARAMETER_INVALID Generated if one of the following

cases applies:
- currencyCode is a null reference
- amount is smaller than 1

4.2.29 JxfsCDRCreateSignatureCapabilities

4.2.29.1 Usage

Provides the capabilities of the device for creating all necessary reference signatures of a category 2 or category
3 banknote.

The default object represents the object to be returned, if it is not (yet) known, what kind of functionality the
device supports.

For the effective evaluation of the capabilities the JxfsCapabilities.deviceOrientation property is also relevant.

4.2.29.2 Summary

Extends Implements
JxfsType

Property Type Default Value Access
supported JxfsCDRSupportedEnum unknown R
orientationsToBeScanned JxfsCDRNoteOrientation

Enum[]
empty array R

deviceScanningBothLongside boolean false R
deviceScanningBothShortside boolean false R

Constructor 1 Parameter
JxfsCDRCreateSignatureCapa
bilities

supported

 orientationsToBeScanned
 deviceScanningBothLongside
 deviceScanningBothShortside

Constructor 2 Parameter
JxfsCDRCreateSignatureCapa
bilities

Sets all properties to their default values.

4.2.29.3 Properties

4.2.29.3.1 supported

Type JxfsCDRSupportedEnum
Remarks Identifies whether the device supports the creation of

reference signatures of items.
 ‘supported’ –the device supports the createSignature

command.
‘notSupported’ –the device does not support the

createSignature command.

CWA 16008-5:2009 (E)

121

4.2.29.3.2 orientationsToBeScanned

Type JxfsCDRNoteOrientationEnum []
Remarks Array of all orientations of a banknote that have to be

scanned in createSignature commands for article 6 tracking.
This does not refer to the recognition process in a cash-in
transaction. This value is preset by the vendor specific
validators implementation.

One call to createSignature may return scans of more than
one orientation.

4.2.29.3.3 deviceScanningBothLongside

Type boolean
Remarks Identifies whether the device supports scans both longside

orientations within one createSignature call.
 ‘true’ –the device scans all longside orientations in one

createSignature call.
‘false’ –the device provides only one longside orientation

scan in a createSignature call.

4.2.29.3.4 deviceScanningBothShortside

Type boolean
Remarks Identifies whether the device supports scans both shortside

orientations within one createSignature call.
 ‘true’ –the device scans all shortside orientations in one

createSignature call.
‘false’ –the device provides only one shortside orientation

scan in a createSignature call.

4.2.29.4 Constructors

4.2.29.4.1 JxfsCDRCreateSignatureCapabilities

Syntax public JxfsCDRCreateSignatureCapabilities(JxfsCDRSupportedEnum
supported, JxfsCDRNoteOrientationEnum orientationsToBeScanned[],
boolean deviceScanningBothLongside, boolean
deviceScanningBothShortside) throws JxfsException

Exceptions Exceptions, which can be generated by this method.
 JXFS_E_PARAMETER_INVALID Generated if one of the following

cases applies:
- supported is a null reference
- orientationsToBeScanned is a null
reference
- supported is true and
orientationsToBeScanned is an
empty array.

CWA 16008-5:2009 (E)

122

4.2.29.4.2 JxfsCDRCreateSignatureCapabilities

Syntax public JxfsCDRCreateSignatureCapabilities() throws JxfsException
Remarks This constructor will be used to generate the default object.
Exceptions No additional exceptions generated.

4.2.30 JxfsCDRCreateSignatureResult

4.2.30.1 Usage

Defines the result of a createSignature operation.

4.2.30.2 Summary

Extends Implements
JxfsType

Property Type Access
signatureList java.util.List of

JxfsCDRReferenceSignature
objects

R

longsideTurned boolean R
shortsideTurned boolean R
allOrientationsScanned boolean R

Constructor Parameter Parameter-Type
JxfsCDRCreateSignatu
reResult

signatureList java.util.List of
JxfsCDRReferenceSign
ature objects

 longsideTurned boolean
 shortsideTurned boolean
 allOrientationsScanned boolean

4.2.30.3 Properties

4.2.30.3.1 signatureList

Type java.util.List of JxfsCDRReferenceSignature objects
Remarks Detailed information for the inserted item. Reference Signature information

is included.
If no signature could be generated, this is an empty list.

4.2.30.3.2 longsideTurned

Type boolean
Remarks Identifies whether the device returned the banknote turned via the long side.
 ‘true’ –the device returned a banknote turned via the long side.

‘false’ –the device returned the banknote with the same orientation as
inserted.

CWA 16008-5:2009 (E)

123

4.2.30.3.3 shortsideTurned

Type boolean
Remarks Identifies whether the device returned the banknote turned via the short side.
 ‘true’ –the device returned a banknote turned via the short side.

‘false’ –the device returned the banknote with the same orientation as
inserted.

4.2.30.3.4 allOrientationsScanned

Type boolean
Remarks Flag if all necessary orientations (see JxfsCDRCreateSignatureCapabilities)

for this kind of insertion have been scanned accordingly. Reasons for not
having all necessary orientations scanned may be technical problems that
prevented performing a scan with the required quality or a BIM that requires
several runs with the same insertion orientation by design.

 ‘true’ –all orientations for this insertion orientation have been scanned. The
application may proceed with another insertion orientation.

‘false’ –not all necessary orientations for this insertion have been scanned.
The application has to repeat the createSignature command with
the same insertion orientation.

4.2.30.4 Constructors

4.2.30.4.1 JxfsCDRCreateSignatureResult

Syntax public JxfsCDRCreateSignatureResult(java.util.List signatureList,
boolean longsideTurned, boolean shortsideTurned, boolean
allOrientationsScanned) throws JxfsException

Exceptions Exceptions, which can be generated by this method.
 JXFS_E_PARAM

ETER_INVALID
Generated if one of the following cases applies:
- signatureList is a null reference
- signatureList contains other elements as of the class
type JxfsCDRReferenceSignature

CWA 16008-5:2009 (E)

124

4.2.31 JxfsCDRReferenceSignature

4.2.31.1 Usage

This class represents a record of a scan of one banknote orientation as a result of a createSignature operation.

The properties derived from JxfsCashType may not represent a banknote (category 2, 3 or 4). Not all validators
support reporting a valid cash type in all cases for a reference signature. An example for this case is a currency
change like the introduction of the Euro in germany. A 50 DEM banknote that has been reported in a self-service
system as category 3 by the cash-in device at 2001-12-28 could be recognized as category 1 after a week, if the
system has been switched to EUR currency.

4.2.31.2 Summary

Extends Implements
JxfsCashTyp
e

Property Type Access
orientation JxfsCDRNoteOrientationEnum R
signature byte[] R

Constructor Parameter Parameter Type
JxfsCDRReference
Signature

kind int

 currencyCode JxfsCurrencyCode
 value long
 variant int
 orientation JxfsCDRNoteOrientationEnum
 signature byte[]

4.2.31.3 Properties

4.2.31.3.1 orientation

Type JxfsCDRNoteOrientationEnum object
Remarks Orientation of the accepted banknote.

4.2.31.3.2 signature

Type byte[]
Remarks Banknote signature data.

CWA 16008-5:2009 (E)

125

4.2.31.4 Constructors

4.2.31.4.1 JxfsCDRReferenceSignature

Syntax public JxfsCDRReferenceSignature(int kind, JxfsCurrencyCode
currencyCode, long value, int variant, JxfsCDRNoteOrientationEnum
orientation, byte signature[]) throws JxfsException

Exceptions Exceptions, which can be generated by this method.
 JXFS_E_PARAMETER_INVALID Generated if one of the following

cases applies:
- orientation is a null reference
- signature is a null reference

CWA 16008-5:2009 (E)

126

4.2.32 JxfsCDRPositionCapabilities

4.2.32.1 Usage

Defines the characteristics of an input/output position.

4.2.32.2 Summary

Extends Implements
JxfsType

Property Type
position int
shutterStatusSupported boolean
shutterCmd boolean
contentsStatusSupported boolean
maxItems int
mechanicalDesign JxfsCDRMechDesignEnum
input boolean
output boolean
rollback boolean
refusal boolean

Constructor Parameter Parameter Type
JxfsCDRPositionCapabil
ities

position int

 shutterStatusSupported boolean
 shutterCmd boolean
 contentsStatusSupported boolean
 maxItems int
 mechanicalDesign JxfsCDRMechDesignEnum
 input boolean
 output boolean
 rollback boolean
 refusal boolean

CWA 16008-5:2009 (E)

127

4.2.32.3 Properties

4.2.32.3.1 position (R)

Type int
Remarks Identification for this position. It can be one of:

• JXFS_C_CDR_POS_LEFT
• JXFS_C_CDR_POS_CENTER
• JXFS_C_CDR_POS_RIGHT
• JXFS_C_CDR_POS_FRONT
• JXFS_C_CDR_POS_REAR
• JXFS_C_CDR_POS_TOP
• JXFS_C_CDR_POS_BOTTOM.

(Defined as dispense position code)

4.2.32.3.2 shutterStatusSupported (R)

Type boolean
Remarks Specifies whether shutter status is supported for this position. When this property

is false the corresponding isNotSupported query will return true.

4.2.32.3.3 shutterCmd (R)

Type boolean
Remarks Defines if the shutter has to be explicitly controlled by the application. When true,

the application is responsible for opening and closing the shutter using
shutterMove.
If this property is true for an output position, then the autoPresent capability must
be false, as it would not be possible for the calling application to determine when
it should open the dispense shutter, due to the possibility for a dispense to be
delayed.
Even if shutterCmd is true a device service may close the shutter automatically. In
this case a further close command of the application will return with
JXFS_RC_SUCCESSFUL.

4.2.32.3.4 contentsStatusSupported (R)

Type boolean
Remarks Specifies whether there is a sensor to detect if the position is empty. When this

property is false, the corresponding isNotSupported query will return true.

4.2.32.3.5 maxItems (R)

Type int
Remarks Maximum number of items which this position can hold. This is not a guaranteed

value. It’s an estimation of the number of items that can be held under normal
conditions.

4.2.32.3.6 mechanicalDesign (R)

Type JxfsCDRMechDesignEnum
Remarks Specifies the mechanical design of this position.

CWA 16008-5:2009 (E)

128

4.2.32.3.7 input (R)

Type boolean
Remarks Specifies whether this position can be used as source for an accept command.

4.2.32.3.8 output (R)

Type boolean
Remarks Specifies whether this position can be used as target for a dispense command.

4.2.32.3.9 rollback (R)

Type boolean
Remarks Specifies whether this position can be used as target for cashInRollback command.

4.2.32.3.10 refusal (R)

Type boolean
Remarks Specifies whether refused notes can be moved to this position during cashIn

command.

4.2.32.4 Constructors

4.2.32.4.1 JxfsCDRPositionCapabilities

Syntax public JxfsCDRPositionCapabilities(int position, boolean
shutterStatusSupported, boolean shutterCmd, boolean
contentsStatusSupported, int maxItems, JxfsCDRMechDesignEnum
mechanicalDesign, boolean input, boolean output, boolean rollback,
boolean refusal) throws JxfsException

Exceptions Exceptions, which can be generated by this method.
 JXFS_E_PARAMETER_INVALID Generated if one of the following

cases applies:
- mechanicalDesign is a null
reference.

CWA 16008-5:2009 (E)

129

4.3 Enum Classes

All enumerations are defined in terms of a class. The following describes all enumerated
classes.

4.3.1 JxfsCDRPrecisionEnum

This enumerated data type represents the possible reporting modes for article 6 categories in an
LCU.

Field Description
perUnit LCU: Values of banknotes per category are valid for the same cuType

per LCU.
PCU: Categorization flags are valid globally for this unit.

perCashType LCU: Counters are valid per cashType and per cuType per PCU.
PCU: This combination is not allowed.

4.3.2 JxfsCDRCashInEnum

This enumerated data type represents the possible states in which an accept transaction can
exist.

Field Description
notActiveItemsAc
cepted

Transaction completed with items being accepted into the devices’
logical/physical unit(s).

notActiveNoItems
Accepted

Transaction completed with no items being accepted into the devices’
logical/physical unit(s).

active Transaction currently active.
activeNoMoreAcc
ept

The transaction is active, but no more items can be accepted. Examples
can be when the escrow is full, a necessary category 2 box is full in an
ECB 6 configuration, specific error states or a reached cash-in limit.

unknown The state of the transaction is unknown. This is also the case if there
was no cash-in transaction before.

4.3.3 JxfsCDRDeviceOrientationEnum

This enumerated data type represents the hardware capability of the device to process
banknotes either short side first or long side first. This value is necessary if an application
wants to show a customer graphically how to handle the banknotes.

Field Description
shortSideFirst A note is inserted using the short side as the leading edge.
longSideFirst A note is inserted using the long side as the leading edge.
unknown The device orientation could not be determined.
notSupported Neither the device nor the processable items have a predefined

orientation (like coin acceptors).

CWA 16008-5:2009 (E)

130

4.3.4 JxfsCDRNoteOrientationEnum

This enumerated data type represents the possible orientations of banknotes entered during an
accept transaction.

Field Description
frontTop If the note was inserted using the wide side as the leading edge, the

note was inserted with the front image facing up and the top edge was
inserted first.
If the note was inserted using the short side as the leading edge, the
note was inserted with the front image facing up and the left edge was
inserted first.

frontBottom If the note was inserted using the wide side as the leading edge, the
note was inserted with the front image facing up and the bottom edge
was inserted first.
If the note was inserted using the short side as the leading edge, the
note was inserted with the front image facing up and the right edge was
inserted first.

backTop If the note was inserted using the wide side as the leading edge, the
note was inserted with the back image facing up and the top edge was
inserted first.
If the note was inserted using the short side as the leading edge, the
note was inserted with the back image facing up and the left edge was
inserted first.

backBottom If the note was inserted using the wide side as the leading edge, the
note was inserted with the back image facing up and the bottom edge
was inserted first.
If the note was inserted using the short side as the leading edge, the
note was inserted with the back image facing up and the right edge was
inserted first.

unknown The orientation of the inserted note could not be determined.
notSupported The hardware is not capable of determining the orientation.

CWA 16008-5:2009 (E)

131

4.3.5 JxfsCDRSupportedEnum

This enumerated data type represents the possible states to indicate if a certain feature is
supported.

Field Description
supported Feature is supported.
unknown It is currently unknown if this feature is supported.
notSupported Feature is not supported.

4.3.6 JxfsCDRMechDesignEnum

This enumerated data type represents the mechanical design for a given position. For more
details on the different position designs see chapter Position Mechanical Design Notes.

Field Description
slot This position is based on a slot design.
tray This position is based on a try design.

4.3.7 JxfsCDRContentsStatusEnum
This enumerated data type represents the contents for a given position.

Field Description
empty The position is empty.
notEmpty The position is not empty.
notSupported The device cannot know if there are any contents in the

position.
unknown The current contents in the position are unknown.

4.3.8 JxfsCDRPositionProcessingProblemsEnum

This enumerated data type represents an indication of any problems that may be affecting a
given position

Field Description
none There are no problems with the position and it's associated

items known.
unknown Due to a hardware error or other condition, the state of the

position cannot be determined.
metallicObjectPresent The position contains a metallic object (e.g. coin).
foreignObjectPresent The position contains a foreign object.
tooManyItems The bunch of items in the position exceeds the capacity of

the position and therefore cannot be processed.
mechanicalTrouble The items at the position cannot be processed because of

mechanical problems like jammed banknotes or a bundle
wrapped with banderole.

wrongOrientation Items are inserted, but with a wrong orientation. Banknote
acceptors are ususally working either short side first or long
side first. Depending on the geometry of the position they
may be even entered in a 90 degrees angle where they
cannot be processed.

CWA 16008-5:2009 (E)

132

4.3.9 JxfsCDRSafeDoorSequenceEnum

This enumerated data type represents the possible command sequences for the openSafeDoor
command.

Field Description
notSupported Safe door command not supported.
beforeStartExchange Safe door must be opened before the exchange operation starts.
afterStartExchange Safe door must be opened after the exchange operation has

started.
beforeOrAfterStartExch
ange

Safe door can be opened independently of the exchange status of
the device.

unknown It is not known when to call the openSafeDoor command.

4.3.10 JxfsCDRStatusSelectorEnum

This enumeration class is used for the base getStatus(java.util.List) method.

Extends Implements
JxfsStatusSelectorEnum

Field Returned Type Description
status JxfsStatus General status of the device.
currencies java.util.Vector of

JxfsCurrency
List of currencies.

cashUnit JxfsCashUnitStatus The complete cash unit.
BIMStatus Integer Status of banknote

identification module.
This status is available only, if
the device service implements
the cash recycler interface.

cashInInfo JxfsCDRCashInStatus Information about current
acceptance process.
This status is available only, if
the device service implements
the cash recycler interface.

mixtable java.util.Vector of
JxfsMixTable

The complete information about
all MixTables.

uvv Boolean Specifies if the UVV is
activated or not.

cashTrayStatus JxfsCashTrayStatus Status of the cash tray
(deprecated)

presentStatus JxfsPresentStatus - deprecated Status of the presenter
(deprecated)

deviceStatus JxfsDeviceStatus Current device status.
dispenseOrderStatus JxfsDispenseOrderStatus Current dispense order
dispenserStatus JxfsDispenserStatus Status of the dispenser
intermediateStackerStatu
s

JxfsIntermediateStackerStatus Intermediate stacker status

safeDoorStatus JxfsSafeDoorStatus Safe door status
shutterStatus JxfsShutterStatus Status of the shutter
transportStatus JxfsTransportStatus Status of the transport unit.
vandalismStatus JxfsVandalismStatus Vandalism attack status.
exchangeStatus JxfsExchangeStatus Exchange operation status.
acceptorStatus JxfsAcceptorStatus Status of the acceptor.
resetStatus JxfsCDRResetStatus Reset status.
positionsStatus JxfsCDRPositionStatus[] Status of the positions.

CWA 16008-5:2009 (E)

133

5 Status Event Classes

If a device status changes one of the following classes is returned via a JxfsStatusEvent. This
xxxStatus-Class is passed with the details property of the JxfsStatusEvent. Each xxxStatus-
Class provides several methods to query the changed device status.

The status JxfsCDRStatus is an exception to this rule: it is only delivered on a getStatus()
method call and can’t be sent due to a status change.

5.1 Summary

Status Event Description
JxfsCashTrayStatus Status of cash tray.
JxfsCashUnitStatus Current cashunit status.
JxfsCDRStatus Collection of all device status.
JxfsDeviceStatus Current device status.
JxfsDispenseOrderStatus Current dispense order.
JxfsDispenserStatus Status of dispenser.
JxfsIntermediateStackerStatus Intermediate stacker status.
JxfsSafeDoorStatus Safe door status.
JxfsShutterStatus Status of shutter.
JxfsTransportStatus Status of transport unit.
JxfsVandalismStatus Vandalism attack status.
JxfsExchangeStatus Exchange status.
JxfsAcceptorStatus Acceptor status.
JxfsCDRResetStatus Reset status.
JxfsCDRPositionStatus Status of a position.

CWA 16008-5:2009 (E)

134

5.2 Details

5.2.1 JxfsCashTrayStatus

Extends Implements
JxfsType

Query Return
isEmpty boolean
isNotEmpty boolean
isNotSupported boolean
isUnknown boolean

5.2.2 JxfsCashUnitStatus

Extends Implements
JxfsType

Query Return
getCashUnit JxfsCashUnit

5.2.3 JxfsCDRStatus

Extends Implements
JxfsStatus

Query Return
getCashTrayStatus JxfsCashTrayStatus (deprecated)
getCashUnitStatus JxfsCashUnitStatus
getDeviceStatus JxfsDeviceStatus
getDispenseOrderStatus JxfsDispenseOrderStatus
getDispenserStatus JxfsDispenserStatus
getIntermediateStackerStatus JxfsIntermediateStackerStatus
getPresentStatus JxfsPresentStatus deprecated
getSafeDoorStatus JxfsSafeDoorStatus
getShutterStatus JxfsShutterStatus (deprecated)
getTransportStatus JxfsTransportStatus
getVandalismStatus JxfsVandalismStatus
getExchangeStatus JxfsExchangeStatus
getAcceptorStatus JxfsAcceptorStatus
getResetStatus JxfsCDRResetStatus
getPositionsStatus JxfsCDRPositionStatus[]

When there is more than one cash tray, the value returned by getCashTrayStatus is a summary
based on the state of each individual tray. The evaluation of this summary must be performed
by the device service, based on this table. If no summary evaluation is provided by the device
service JxfsCDRStatus class should fire a NOT_SUPPORTED exception when accesing
getCashTrayStatus.

Summary Empty Not empty Unknown Not Supported
Not Supported None None None All
Empty All None None NA
Unknown Any Any At least one any
Not empty Any At least one None any

NA stands for “Not Applicable”

CWA 16008-5:2009 (E)

135

When there is more than one shutter, the value returned by getShutterStatus is a summary
evaluated as:

Summary Closed Open Jammed Unknown
Unknown Any Any Any At least one
Jammed Any Any At least one None
Open Any At least one None None
Closed All None None None
Not Supported None None None None

Also the value returned by getPresentStatus is a summary evaluated as:

Summary Not Presented Presented Unknown
Unknown Any Any At least one
Presented Any At least one None
Not Presented All None None
Not Supported None None None

5.2.4 JxfsDeviceStatus

Extends Implements
JxfsType

Query Return
isOnLine boolean
isOffLine boolean
isPowerOff boolean
isBusy boolean
isNoDevice boolean
isUserError boolean
isHardwareError boolean

CWA 16008-5:2009 (E)

136

5.2.5 JxfsDispenseOrderStatus

Extends Implements
JxfsType

Query Return
getDispenseOrder JxfsDispenseOrder
getIdentificationID int

5.2.6 JxfsDispenserStatus

Extends Implements
JxfsType

Query Return
isOk boolean
isJxfsCashUnitState boolean
isJxfsCashUnitStop boolean
isJxfsCashUnitUnknown boolean

5.2.7 JxfsIntermediateStackerStatus

Extends Implements
JxfsType

Query Return
isEmpty boolean
isNotEmpty boolean deprecated
isUnknown boolean
isNotSupported boolean

5.2.8 JxfsSafeDoorStatus

Extends Implements
JxfsType

Query Return
isNotSupported boolean
isOpen boolean
isClosed boolean
isLocked boolean
isUnknown boolean
getDelay JxfsDelay
getIdentificationID int

Note:

Due to device characteristics status queries isOpen() eq. true and isLocked() eq. true are not
possible at the same time, while isClosed() eq. true and isLocked() eq true are possible at the
same time.

CWA 16008-5:2009 (E)

137

5.2.9 JxfsShutterStatus

Extends Implements
JxfsType

Query Return
isClosed boolean
isOpen boolean
isJammed boolean

NOTE: this value will be true whenever the device
detects a jam in the shutter. If device is able to report
more precise information about this jam,
isJammedOpening or isJammedClosing may be true
as well.

isJammedOpening boolean

The shutter jammed while trying to open.
NOTE: if this value is true, then isJammed should
return true, and isJammedClosing should return false.

isJammedClosing boolean

The shutter jammed while trying to close.
NOTE: if this value is true, then isJammed should
return true, and isJammedOpening should return
false.

isJammed boolean
isNotSupported boolean
isUnknown boolean

5.2.10 JxfsTransportStatus

Extends Implements
JxfsType

Query Return
isOk boolean
isInOp boolean
isNotSupported boolean
isUnknown boolean

5.2.11 JxfsVandalismStatus

Extends Implements
JxfsType

Query Return
isManipulation boolean
isNotSupported boolean

5.2.12 JxfsPresentStatus - deprecated

Extends Implements
JxfsType

Query Return
isUnknown boolean
isPresented boolean

CWA 16008-5:2009 (E)

138

5.2.13 JxfsExchangeStatus

Extends Implements
JxfsType

Query Return
isActive boolean
isNotActive boolean
isNotSupported boolean
isUnknown boolean

5.2.14 JxfsAcceptorStatus

5.2.14.1 Usage

Represents the status of the cash acceptor functionality.

5.2.14.2 Summary

Extends Implements
JxfsType

Property Type Access
acceptorStatus int R

Constructor Parameter Parameter-Type
JxfsAcceptorStatus status int

Method Return Meaning
isOk boolean The acceptorStatus is

JXFS_S_CDR_ACCEPTOR_O
K

isCashUnitState boolean The acceptorStatus is
JXFS_S_CDR_ACCEPTOR_C
U_STATE

isCashUnitStop boolean The acceptorStatus is
JXFS_S_CDR_ACCEPTOR_C
U_STOP

isCashUnitUnknown boolean The acceptorStatus is
JXFS_S_CDR_ACCEPTOR_C
U_UNKNOWN

isCashUnitNotSupported boolean The acceptorStatus is
JXFS_S_CDR_ACCEPTOR_C
U_NOT_SUPPORTED.

CWA 16008-5:2009 (E)

139

5.2.14.3 Properties

5.2.14.3.1 acceptorStatus

Type int
Remarks One of the values:

JXFS_S_CDR_ACCEPTOR_OK,
JXFS_S_CDR_ACCEPTOR_CU_STATE,
JXFS_S_CDR_ACCEPTOR_CU_STOP,
JXFS_S_CDR_ACCEPTOR_CU_UNKNOWN,
JXFS_S_CDR_ACCEPTOR_CU_NOT_SUPPORTED.

5.2.14.4 Constructors

Syntax public JxfsAcceptorStatus(int status) throws JxfsException
Exceptions Exceptions, which can be generated by this method.
 JXFS_E_PARAMETE

R_INVALID
Generated if the status is not one of:
JXFS_S_CDR_ACCEPTOR_OK,
JXFS_S_CDR_ACCEPTOR_CU_STATE,
JXFS_S_CDR_ACCEPTOR_CU_STOP,
JXFS_S_CDR_ACCEPTOR_UNKNOWN.

5.2.15 JxfsCDRResetStatus

5.2.15.1 Usage

Describes whether reset is required to return the device to a known operational state and details about the effects
of this call. This information can be used by the application to decide if the reset can be performed during
transaction execution, when the ATM is out of service, or wait for supervisor presence.

5.2.15.2 Summary

Extends Implements
JxfsType

.
Property Type Access
resetRequired boolean R
maxTime int R
returnItemsPossible boolean R
informationLost boolean R

Constructor#1 Parameter Parameter-Type
JxfsCDRResetStatus resetRequired boolean
 maxTime int
 returnItemsPossible boolean
 informationLost boolean

Constructor#2 Parameter Parameter-Type
JxfsCDRResetStatus resetRequired boolean
 returnItemsPossible boolean
 informationLost boolean

Method Return
getProperty Property
isProperty boolean

CWA 16008-5:2009 (E)

140

5.2.15.3 Properties

5.2.15.3.1 resetRequired (R)

Type boolean
Remarks If true, the hardware requires a reset command which

will attempt to return it to a known operational state.

Normally, errors are resolved internally by the device
service. There are, however, some scenarios in which this
automatic recovery may not be performed:

• When automatic recovery will cause an observable

impact on the customer. In this case, this method
allows the application to decide the best time to
perform the recovery.

• When automatic recovery will cause some valuable
information to be lost (e.g. information required to
deal with a customer dispute).

• When an unrecoverable error has occurred. In this
case, the device has to be informed when the error is
manually corrected, in order to allow it to perform
any device specific activities required to return it to
an operational state.

This property is set to true if and only if such exceptional
events occur.

If a J/XFS call sends an operation complete event with
result = JXFS_E_CDR_RESET_REQUIRED, the
JxfsCDRResetStatus.resetRequired property will always
be true.

This property could be true without a previous operation
complete event with result =
JXFS_E_CDR_RESET_REQUIRED.

If this property is true and the device service is not closed
or restarted, it will be true until a reset command is sent.

After calling reset, this property becomes false if the
reset performed successfully and the device is operative
again or the device requires manual intervention to be
recovered.

CWA 16008-5:2009 (E)

141

5.2.15.3.2 maxTime (R)

Type int
Remarks Maximum estimated time to perform the reset, expressed

in milliseconds.
A value of
JXFS_C_CDR_RESET_MAXTIME_UNKNOWN
means unknown.

5.2.15.3.3 returnItemsPossible (R)

Type boolean
Remarks If true, the reset command may move items to a position

accesible by the customer.

5.2.15.3.4 informationLost (R)

Type boolean
Remarks If true, the reset command may lose information during

the execution and the counters or status could be
inaccurate.

5.2.15.4 Constructors

5.2.15.4.1 JxfsCDRResetStatus

Syntax JxfsCDRResetStatus(boolean resetRequired, int
maxTime, boolean returnItemsPossible, boolean
informationLost)

Exceptions No exception thrown.

5.2.15.4.2 JxfsCDRResetStatus

Syntax JxfsCDRResetStatus(boolean resetRequired, boolean
returnItemsPossible, boolean informationLost)

Exceptions No exception thrown.
Remarks Creates a JxfsCDRResetStatus with unknown maxTime.

CWA 16008-5:2009 (E)

142

5.2.16 JxfsCDRPositionStatus

5.2.16.1 Summary

Extends Implements
JxfsType

.
Property Type Access
position int R
shutterStatus JxfsShutterStatus R
contentsStatus JxfsCDRContentsStatusEnum R
processingProblems JxfsCDRPositionProcessingProblemsEnum R

Constructor Parameter Parameter-Type
JxfsCDRPositionStatus position int
 shutterStatuse JxfsShutterStatus
 contentsStatus JxfsCDRContentsStatusEnum
 processingProblems JxfsCDRPositionProcessingProblemsE

num

Method Return
getProperty Property

5.2.16.2 Properties

5.2.16.2.1 position (R)

Type int
Remarks Identification of the position.

5.2.16.2.2 shutter (R)

Type JxfsShutterStatus
Remarks Status of the shutter.

5.2.16.2.3 contentsStatus (R)

Type JxfsCDRContentsStatusEnum
Remarks Status of the contents.

5.2.16.2.4 processingProblems (R)

Type JxfsCDRPositionProcessingProblemsEnum
Remarks Information about problems at the position.

5.2.16.3 Constructors

5.2.16.3.1 JxfsCDRPositionStatus

Syntax JxfsCDRPositionStatus(int position, JxfsShutterStatusshutterStatus,
JxfsCDRContentsStatusEnum contentsStatus,

CWA 16008-5:2009 (E)

143

JxfsCDRPositionProcessingProblemsEnum procesingProblems) throws
JxfsException

Exceptions Exceptions, which can be generated by this method.
 JXFS_E_PARAMETER_INVALI

D
Generated if
- shutterStatus is a null reference
- contentsStatus is a null reference
- processingProblems is a null
reference

CWA 16008-5:2009 (E)

144

6 Events

6.1 Intermediate Events

6.1.1 Intermediate Event Code Summary and Description

Value Description Value
JXFS_I_CDR_INPUT_EURART6 At least one category 2 or one

category 3 banknote has been
detected.

6212

JXFS_I_CDR_INPUT_REFUSED At least one banknote was not
recognized during a cashIn operation
and has been returned to the reject
slot.

6209

JXFS_I_CDR_PARTIAL_DISPENSE A partial dispense occurred. 6144
JXFS_I_CDR_EURART6_EVENT_POSSIB
LE

Optional event. Indicates that
cashInEnd operations can fire article
6 events during the cashin transaction
that is just starting.

6801

JXFS_I_CDR_MAX_VALUE_REACHED Event indicating that a currency limit
has been hit.

6802

6.1.2 IJxfsCashDispenserControl Intermediate Events

Methods
denominate

dispense
dispenseExec
startExchange
endExchange

openSafeDoor
calibrateCashUnit

getDateTime
setDateTime

queryOrder
removeOrder

queryCashUnit
updateCashUnit

reset

Intermediate Events
JXFS_I_CDR_PARTIAL_DISPENSE x x
JXFS_I_CDR_INPUT_EURART6 x

CWA 16008-5:2009 (E)

145

Methods

testCashUnits
queryDenominations

updateDenominations

Intermediate Events
JXFS_I_CDR_PARTIAL_DISPENSE x
JXFS_I_CDR_INPUT_EURART6

CWA 16008-5:2009 (E)

146

6.1.3 IJxfsCashRecyclerControl Intermediate Events

Methods
cashInStart

cashIn
cashInEnd

cashInRollback
empty

querySignatures
updateBIMDataSets

Error Codes
JXFS_I_CDR_INPUT_EURART6 x
JXFS_I_CDR_INPUT_REFUSED x
JXFS_I_CDR_PARTIAL_DISPENSE x x
JXFS_I_CDR_EURART6_EVENT_POSSIBLE x
JXFS_I_CDR_MAX_VALUE_REACHED x x x

6.1.4 IJxfsATMControl Intermediate Events

Methods
present

reject
retract

shutterMove

Error Codes
JXFS_I_CDR_INPUT_EURART6 x

CWA 16008-5:2009 (E)

147

6.1.5 Intermediate Event Details

6.1.5.1 JXFS_I_CDR_INPUT_EURART6

This intermediate event is sent once per operation, when at least a category 2 or category 3
banknote is detected for the first time. It is not regenerated if the same category 2/3 banknote
passes the bill validator more than once.
This event can be generated only if these two conditions are met: trustedUser is false and
operation is executed within a cash acceptance transaction (cashInStart and cashInEnd).
Field Value
operationID operationID of the method initiating this event
identificationID identificationID of the method initiating this event.
reason JXFS_I_CDR_INPUT_EURART6
data null if generated during the execution of an IJxfsCashRecyclerControl

method, otherwise, a JxfsArt6CashInOrder object is returned
containing information for all category 2 and category 3 notes
(according to this event description above) when no more notes need
to be processed.

6.1.5.2 JXFS_I_CDR_INPUT_REFUSED

This intermediate event is sent, when at least one banknote was not recognized and has been
returned to the reject slot.

Field Value
operationID operationID of method initiating this event
identificationID identificationID of method initiating this event
reason JXFS_I_CDR_INPUT_REFUSED
data Always null.

6.1.5.3 JXFS_I_CDR_PARTIAL_DISPENSE

This intermediate event is sent, when a partial dispense occurs.

Field Value
operationID operationID of method initiating this event
identificationID identificationID of method initiating this event
reason JXFS_I_CDR_PARTIAL_DISPENSE
data JxfsDispenseOrderStatus object
 Contains a dispense order, which is part of multiple dispenses.

6.1.5.4 JXFS_I_CDR_EURART6_EVENT_POSSIBLE

This intermediate event is sent to indicate that Article 6 events may be generated by
cashInEnd operation within a cashin transaction.

Field Value
operationID operationID of method initiating this event
identificationID identificationID of method initiating this event
reason JXFS_I_CDR_EURART6_EVENT_POSSIBLE
data null

CWA 16008-5:2009 (E)

148

6.1.5.5 JXFS_I_CDR_MAX_VALUE_REACHED

This intermediate event is sent, when inside a cashIn operation a banknote will be rejected,
because accepting it would exceed the given limit or the limit will be exactly matched by
accepted banknotes, whatever comes first.

Field Value
operationID operationID of method initiating this event
identificationID identificationID of method initiating this event
reason JXFS_I_CDR_MAX_VALUE_REACHED
data none

CWA 16008-5:2009 (E)

149

6.2 Status Events

The following tables specify which JxfsStatusEvents can be generated during a method call.

6.2.1 Status Event Code Summary and Description

Value Description Value
JXFS_S_CDR_CASH_AVAILABLE Cash is available at the device

exit slot.
6701

JXFS_S_CDR_CASH_TAKEN Cash has been removed from
the last opened position, and
position contents are not
accesible (cannot be altered) by
the customer.

6192

JXFS_S_CDR_CASH_TRAY_CHANGED deprecated - Content of cash
tray changed.

6160

JXFS_S_CDR_CASHUNIT_CHANGED Cashunit changed. 6153
JXFS_S_CDR_CASHUNIT_CONFIGURATION_C
HANGED

The cashunit configuration was
changed.

6154

JXFS_S_CDR_CASHUNIT_THRESHOLD A cashunit threshold was
changed.

6155

JXFS_S_CDR_DATE_TIME_CHANGED Date or time of device changed. 6169
JXFS_S_CDR_DELAYED_DISPENSE Dispense order delayed. 6156
JXFS_S_CDR_DELAYED_ORDER_CHANGED Status of delayed dispense order

changed.
6702

JXFS_S_CDR_DELAYED_ORDER_REMOVED A dispense order has been
removed from the list of orders.

6703

JXFS_S_CDR_DEVICE_STATUS_CHANGED Device status changed. 6162
JXFS_S_CDR_DISPENSER_STATUS_CHANGED Dispenser status changed. 6161
JXFS_S_CDR_INTERMEDIATE_STACKER_CHA
NGED

Content of intermediate stacker
changed.

6163

JXFS_S_CDR_MIXTABLE_CHANGED Property mixTables has been
changed.

6704

JXFS_S_CDR_SAFEDOOR_CHANGED Status of safe door changed. 6165
JXFS_S_CDR_SHUTTER_CHANGED deprecated - Shutter status has

changed.
6158

JXFS_S_CDR_TRANSPORT_CHANGED Transport mechanism status
changed.

6167

JXFS_S_CDR_VANDALISM_CHANGED Manipulation detected. 6168
JXFS_S_CDR_EXCHANGE_CHANGED Exchange state changed. 6210
JXFS_S_CDR_ACCEPTOR_STATUS_CHANGED Status of the acceptor changed. 6311
JXFS_S_CDR_CASH_IN_CHANGED Information about the current

cash-in transaction has changed.
6705

JXFS_S_CDR_RESET_STATUS_CHANGED Reset status changed. 6189
JXFS_S_CDR_DENOM_INFO_CHANGED The denomination info changed. 6211
JXFS_S_CDR_POSITION_CHANGED The status for one of the

supported positions has
changed.

6213

CWA 16008-5:2009 (E)

150

6.2.2 Status Event Details

6.2.2.1 JXFS_S_CDR_CASH_AVAILABLE

This status event is sent, when cash is available at the device position.

Field Value
status JXFS_S_CDR_CASH_AVAILABLE
details JxfsDispenseOrderStatus object
 For dispense operations it contains a dispense order, which can be

removed from the output position of the device.
 Property identificationID is used to identify the issuer of the operation.
 For cashIn operations it contains a dummy object as no cash

information is available at this time:
new JxfsDispenseOrderStatus(

new JxfsDispenseOrder(
0, 0, new
JxfsDenomination(new
Vector(), 0, 0), new
JxfsCurrency(new
JxfsCurrencyCode(""), 0), new
Date(), 0),

0);

6.2.2.2 JXFS_S_CDR_CASH_TAKEN

This status event is sent, when cash is removed from the last opened position.

Field Value
status JXFS_S_CDR_CASH_TAKEN
details JxfsDispenseOrderStatus object
 For dispense operations it contains a dispense order, which was

removed from the output position of the device.
 Property identificationID is used to identify the issuer of the operation.
 For cashIn operations it contains a dummy object as no cash

information is available at this time:
new JxfsDispenseOrderStatus(

new JxfsDispenseOrder(
0, 0, new
JxfsDenomination(new
Vector(), 0, 0), new
JxfsCurrency(new
JxfsCurrencyCode(""), 0), new
Date(), 0),

0);

CWA 16008-5:2009 (E)

151

6.2.2.3 JXFS_S_CDR_CASH_TRAY_CHANGED

This status event is sent, when the status of the cash tray changes.

Field Value
status JXFS_S_CDR_CASH_TRAY_CHANGED
details JxfsCashTrayStatus object.
 Current cash tray status.

6.2.2.4 JXFS_S_CDR_CASHUNIT_CHANGED

This status event is sent, if the cashunit content changed.

Field Value
status JXFS_S_CDR_CASHUNIT_CHANGED
details JxfsCashUnitStatus object.
 Represents the updated cash units.

6.2.2.5 JXFS_S_CDR_CASHUNIT_CONFIGURATION_CHANGED

This status event is sent, if the cashunit configuration changed.

Field Value
status JXFS_S_CDR_CASHUNIT_CONFIGURATION_CHANGED
details JxfsCashUnitStatus object
 Represents the modified cash units.

6.2.2.6 JXFS_S_CDR_CASHUNIT_THRESHOLD

This status event is sent, if a threshold change occurred for one or more cassettes.

Field Value
status JXFS_S_CDR_CASHUNIT_THRESHOLD
details JxfsCashUnitStatus object
 Represents the modified cash units.

6.2.2.7 JXFS_S_CDR_DATE_TIME_CHANGED

This status event is sent, when date or time for a device was changed.

Field Value
status JXFS_S_CDR_DATE_TIME_CHANGED
details Date object
 Previous device date and time.

CWA 16008-5:2009 (E)

152

6.2.2.8 JXFS_S_CDR_DELAYED_DISPENSE

This status event is sent, if the dispense order is delayed for later dispense.

Field Value
status JXFS_S_CDR_DELAYED_DISPENSE
details JxfsDispenseOrderStatus object
 Specifies among other data the time to delay in ms.

6.2.2.9 JXFS_S_CDR_DELAYED_ORDER_CHANGED

This status event is sent, when the status of a dispense order changes. The state of the order
can change from delayed to dispensable, or vice versa; or the order can be redelayed because
of other dispenses meanwhile.

Field Value
status JXFS_S_CDR_DELAYED_ORDER_CHANGED
details JxfsDispenseOrderStatus object
 Contains dispense order with state changed..
 Property identificationID is used to identify the issuer of the operation.

6.2.2.10 JXFS_S_CDR_DELAYED_ORDER_REMOVED

This status event is sent, when a dispense order was removed from the internal list of orders.

Field Value
status JXFS_S_CDR_DELAYED_ORDER_REMOVED
details JxfsDispenseOrderStatus object.
 Contains the order, which was removed, either by an explicit call to

removeOrder or when the order was dispensed or is removed from the
internal list because of other reasons

6.2.2.11 JXFS_S_CDR_DEVICE_STATUS_CHANGED

This status event is sent, when the device status changes.

Field Value
status JXFS_S_CDR_DEVICE_STATUS_CHANGED
details JxfsDeviceStatus object
 Contains information about current device status

CWA 16008-5:2009 (E)

153

6.2.2.12 JXFS_S_CDR_DISPENSER_STATUS_CHANGED

On changes of the dispenser status, this event is sent.

Field Value
status JXFS_S_CDR_DISPENSER_STATUS_CHANGED
details JxfsDispenserStatus object
 Current dispenser status.

6.2.2.13 JXFS_S_CDR_INTERMEDIATE_STACKER_CHANGED

This status event is sent, when the status of the stacker changes.

Field Value
status JXFS_S_CDR_INTERMEDIATE_STACKER_CHANGED
details JxfsIntermediateStackerStatus object
 Contains information about the intermediate stacker

6.2.2.14 JXFS_S_CDR_MIXTABLE_CHANGED

This status event is sent, when the mixTables were changed.

Field Value
status JXFS_S_CDR_MIXTABLE_CHANGED
details java.util.Vector of JxfsMixTable objects
 Updated property mixTables.

6.2.2.15 JXFS_S_CDR_SAFE_DOOR_CHANGED

If the safe-door is operated or its status changes, this event is sent.

Field Value
status JXFS_S_CDR_SAFE_DOOR_CHANGED
details JxfsSafeDoorStatus object
 Actual safe-door status.
 Contains the delay until the safe door can be opened or will be closed.

(in ms)

CWA 16008-5:2009 (E)

154

6.2.2.16 JXFS_S_CDR_SHUTTER_CHANGED

This status event is sent, if the shutter status changed.

Field Value
status JXFS_S_CDR_SHUTTER_CHANGED
details JxfsShutterStatus object.
 New shutter status.

6.2.2.17 JXFS_S_CDR_TRANSPORT_CHANGED

This status event is sent, if the state of the transport mechanism changes.

Field Value
status JXFS_S_CDR_TRANSPORT_CHANGED
details JxfsTransportStatus object
 Current transport mechanism status.

6.2.2.18 JXFS_S_CDR_VANDALISM_CHANGED

This status event is sent, if the vandalism detector reports a manipulation.

Field Value
status JXFS_S_CDR_VANDALISM_CHANGED
details JxfsVandalismStatus object
 Current state of vandalism detector.

6.2.2.19 JXFS_S_CDR_EXCHANGE_CHANGED

This status event is sent, if the exchange state changes.

Field Value
status JXFS_S_CDR_EXCHANGE_CHANGED
details JxfsExchangeStatus object
 Current exchange state.

6.2.2.20 JXFS_S_CDR_ACCEPTOR_STATUS_CHANGED

On changes of the acceptor status, this event is sent.

Field Value
status JXFS_S_CDR_ACCEPTOR_STATUS_CHANGED
details JxfsAcceptorStatus object
 Current acceptor status.

CWA 16008-5:2009 (E)

155

6.2.2.21 JXFS_S_CDR_CASH_IN_CHANGED

Any information about the current cash-in transaction changed.

Field Value
status JXFS_S_CDR_CASH_IN_CHANGED
details null

6.2.2.22 JXFS_S_CDR_RESET_STATUS_CHANGED

This status event is sent, if the reset status changes.

Field Value
status JXFS_S_CDR_RESET_STATUS_CHANGED
details JxfsCDRResetStatus object

Current state of reset status.

6.2.2.23 JXFS_S_CDR_DENOM_INFO_CHANGED

This status event is sent, if the denomination info has changed. This is the case if any
denomination object has been enabled or disabled for cash-in or cash-out.

Field Value
status JXFS_S_CDR_DENOM_INFO_CHANGED
details null

6.2.2.24 JXFS_S_CDR_POSITION_CHANGED

This status event is sent, if the state for a position changes.

Field Value
status JXFS_S_CDR_POSITION_CHANGED
details JxfsCDRPositionStatus object. Status of the position that changes the

state.

CWA 16008-5:2009 (E)

156

7 Codes

7.1 Operation Codes

Following codes specify the method which generated a JxfsOperationCompleteEvent.

7.1.1 IJxfsCashDispenserControl

Value Method Value
JXFS_O_CDR_DENOMINATE denominate 6107
JXFS_O_CDR_DISPENSE dispense 6108
JXFS_O_CDR_DISPENSE_EXEC dispenseExec 6109
JXFS_O_CDR_START_EXCHANGE startExchange 6110
JXFS_O_CDR_END_EXCHANGE endExchange 6111
JXFS_O_CDR_OPEN_SAFE_DOOR openSafeDoor 6112
JXFS_O_CDR_CALIBRATE_CASH_UNIT calibrateCashUnit 6113
JXFS_O_CDR_GET_DATE_TIME getDateTime 6119
JXFS_O_CDR_SET_DATE_TIME setDateTime 6120
JXFS_O_CDR_QUERY_ORDER queryOrder 6115
JXFS_O_CDR_REMOVE_ORDER removeOrder 6116
JXFS_O_CDR_QUERY_CASH_UNIT queryCashUnit 6114
JXFS_O_CDR_UPDATE_CASH_UNIT updateCashUnit 6118
JXFS_O_CDR_QUERY_DENOMINATION queryDenominations 6181
JXFS_O_CDR_UPDATE_DENOMINATION updateDenominations 6182
JXFS_O_CDR_RESET reset 6117
JXFS_O_CDR_TESTCASHUNITS testCashUnits 6184

7.1.2 IJxfsCashRecyclerControl

Value Method Value
JXFS_O_CDR_CASH_IN_START cashInStart 6121
JXFS_O_CDR_CASH_IN cashIn 6122
JXFS_O_CDR_CASH_IN_END cashInEnd 6123
JXFS_O_CDR_CASH_IN_ROLLBACK cashInRollback 6124
JXFS_O_CDR_EMPTY empty 6125
JXFS_O_CDR_QUERY_SIGNATURES querySignatures 6180
JXFS_O_CDR_UPDATE_BIM_DATA_SETS updateBIMDataSets 6183
JXFS_O_CDR_CREATE_SIGNATURE createSignature 6900

7.1.3 IJxfsATMControl

Value Method Value
JXFS_O_CDR_PRESENT present 6126
JXFS_O_CDR_REJECT reject 6127
JXFS_O_CDR_RETRACT retract 6128
JXFS_O_CDR_SHUTTER_MOVE shutterMove 6129

CWA 16008-5:2009 (E)

157

7.2 Error Codes Summary and Description

Value Description Value
JXFS_E_CDR_ASSET_UNDEFINED Due to device error

condition the cash unit
content can not be
determined.

6603

JXFS_E_CDR_CASH_DEVICE_ERROR An unspecified error
occurred.

6073

JXFS_E_CDR_CASH_UNIT_ERROR A selected cash unit caused
an error.

6074

JXFS_E_CDR_CASHIN_ACTIVE The device has already a
cashInStart command
issued.

6072

JXFS_E_CDR_DELAYED_DISPENSE Dispense order is delayed. 6077
JXFS_E_CDR_EXCHANGE_ACTIVE The device is in an exchange

state.
6076

JXFS_E_CDR_ILLEGAL_DISPENSE_ORDER Invalid orderID during
dispenseExec.

6078

JXFS_E_CDR_ILLEGAL_DISPENSE_REQUEST Invalid data during dispense
or empty.

6601

JXFS_E_CDR_INPUT_REFUSED cashIn operation failure. 6079
JXFS_E_CDR_INVALID_BILL Invalid bill detected during

cashIn.
6082

JXFS_E_CDR_INVALID_CASH_UNIT Invalid cash unit ID. 6080
JXFS_E_CDR_INVALID_COIN Invalid coin detected during

cashIn.
6083

JXFS_E_CDR_INVALID_CURRENCY JxfsCurrency type is not
configured.

6081

JXFS_E_CDR_INVALID_DENOMINATION The sum values for cashbox
and cash units do not match
the amount specified.

6084

JXFS_E_CDR_INVALID_MIXNUMBER The number refers to an
undefined mix-table or mix-
algorithm.

6085

JXFS_E_CDR_INVALID_RETRACT Retract area is invalid for
this system.

6086

JXFS_E_CDR_INVALID_SIGNATURE_ID A signature Id for which no
signature is available is
supplied as input parameter.

6144

JXFS_E_CDR_NO_BILLS There were no items (bills or
coins) to handle.

6088

JXFS_E_CDR_NO_CASHIN_STARTED cashInStart was not called. 6089
JXFS_E_CDR_NO_EXCHANGE_ACTIVE The device is not in an

exchange state.
6090

JXFS_E_CDR_NOT_DISPENSABLE The amount is not
dispensable.

6087

JXFS_E_CDR_RESET_REQUIRED reset operation is required. 6091
JXFS_E_CDR_TOO_MANY_BILLS The request would require

too many bills to be
dispensed.

6092

JXFS_E_CDR_TOO_MANY_COINS The request would require
too many coins to be
dispensed.

6093

JXFS_E_CDR_UNABLE_MOVE_SHUTTER Shutter could not be moved. 6094
JXFS_E_CDR_UVV_IN_PROCESS UVV delay is still active for

this order.
6095

JXFS_E_CDR_UVV_NOT_DISPENSEABLE Order is not dispensable due
to UVV regulations.

6602

CWA 16008-5:2009 (E)

158

JXFS_E_CDR_NO_UPDATE_NECESSARY The data sets are up to date.
Nothing to do.

6145

JXFS_E_CDR_NO_DATA_SET_MATCH The device does not allow a
download of the provided
data sets. Possible reasons
are that they are not
compatible or the provided
data set is older than the one
inside the machine.

6146

CWA 16008-5:2009 (E)

159

8 Constants

8.1 Output position codes

Following output position codes can be or’ed groupwise. This is possible for a capability
query. These codes are mainly used by dispense, retract and shutter operations.

Constant Description Value
JXFS_C_CDR_POS_NONE No position selected 1
JXFS_C_CDR_POS_DEFAULT Use configurated position 2
JXFS_C_CDR_POS_LEFT Use left output side 4
JXFS_C_CDR_POS_CENTER Use center output side 8
JXFS_C_CDR_POS_RIGHT Use right output side 16
JXFS_C_CDR_POS_FRONT Use front output side 32
JXFS_C_CDR_POS_REAR Use rear output side 64
JXFS_C_CDR_POS_TOP Use top output side 128
JXFS_C_CDR_POS_BOTTOM Use bottom output side 256

Constant Description Value
JXFS_C_CDR_POS_OVERFLOW Use overflow cassette 512
JXFS_C_CDR_POS_REJECT Use reject cassette 1024

8.2 Device Type codes

Constant Description Value
JXFS_C_CDR_TYPE_NONE Device is not defined 6010
JXFS_C_CDR_TYPE_DISPENSER Device is a Cash Dispenser 6011
JXFS_C_CDR_TYPE_RECYCLER Device is a Cash Recycler 6012
JXFS_C_CDR_TYPE_ATM Device is a Automated Teller Machine 6013

8.3 Cash Type codes

Constant Description Value
JXFS_C_CDR_CURR_BILL Item represents a bill 6014
JXFS_C_CDR_CURR_COIN Item represents a coin 6015

8.4 Cash Type variant code

Constant Description Value
JXFS_C_CDR_NO_VARIANT No cash type variant information

available
6050

8.5 CashUnit Kind codes

Constant Description Value
JXFS_C_CDR_LCU_NA Not available; cash unit is missing 6019
JXFS_C_CDR_LCU_DISPENSE Cash unit can be used for dispense. 6016
JXFS_C_CDR_LCU_DEPOSIT Cash unit can be used for deposit. 6017
JXFS_C_CDR_LCU_RECYCLE Cash unit can be used for dispense and

deposit.
6018

CWA 16008-5:2009 (E)

160

8.6 CashUnit Type codes

Constant Description Value
JXFS_C_CDR_LCU_BAIT_TRAP Cash unit has bait trap

capability.
6020

JXFS_C_CDR_LCU_BILL_CASSETTE Bill cassette of cash dispenser 6023
JXFS_C_CDR_LCU_COIN_CYLINDER Cylinder of the coin dispenser 6024
JXFS_C_CDR_LCU_COIN_DISPENSER Coin dispenser as a whole unit 6025
JXFS_C_CDR_LCU_COUPON Cassette for coupons or

advertising materials
6027

JXFS_C_CDR_LCU_CURRENCY_CASSETTE Cassette, which may contain
various bills with a different
denomination for one
currency.

6341

JXFS_C_CDR_LCU_DOCUMENT Cassette for documents 6028
JXFS_C_CDR_LCU_ESCROW Cassette is an escrow 6029
JXFS_C_CDR_LCU_NA Not available; cash unit is

missing
6019

JXFS_C_CDR_LCU_OVERFLOW_CASSETTE Overflow cassette of cash
dispenser

6022

JXFS_C_CDR_LCU_REJECT_CASSETTE Reject cassette of cash
dispenser

6021

JXFS_C_CDR_LCU_RETRACT_CASSETTE Retract cassette of cash
dispenser

6026

8.7 CashUnit Status codes

Constant Description Value
JXFS_C_CDR_LCU_INOP The cassette or coin cylinder

is inoperative.
6036

JXFS_C_CDR_LCU_MISSING The cassette or coin cylinder
is missing.

6037

JXFS_C_CDR_LCU_NO_REF There is no reference value
available for the notes in this
cassette.
The cash unit needs
calibration to be in a usable
state.

6039

JXFS_C_CDR_LCU_MANIP The cash unit is in a state that
needs to be confirmed and
needs the information to be
confirmed via updateCashUnit
or endExchange, by setting
this status to
JXFS_C_CDR_LCU_OK.

6051

JXFS_C_CDR_LCU_NO_VALUE The JxfsCashType of the
specified cash unit is not
available. The application
must provide them and set the
status to
JXFS_C_CDR_LCU_OK via
updateCashUnit or
endExchange.
If the values of the cash unit
are not available and cannot
be set by the application using
updateCashUnit r
endExchange the status will be

6038

CWA 16008-5:2009 (E)

161

JXFS_C_CDR_LCU_INOP
instead.

JXFS_C_CDR_LCU_NOT_DISPENSABLE Cannot dispense from this
cassette.

6040

JXFS_C_CDR_LCU_OK The cash unit is in a good
state.

6031

JXFS_C_CDR_LCU_UNKNOWN The state of the cash unit is
unknown.

6030

8.8 Mix Type codes

Constant Description Value
JXFS_C_CDR_MIX_ALGORITHM An algorithm is selected for mixing 6041
JXFS_C_CDR_MIX_TABLE A table is selected for mixing 6042
JXFS_C_CDR_MIX_DENOM The current selected JxfsDenomination is

used.
6043

8.9 Mix Table codes

Constant Description Value
JXFS_C_CDR_MXT_NONE No mix-table specified 6381
JXFS_C_CDR_MXT_TABLE_BASE Base constant for vendor specific mix

tables.
6382

 Remark:

Vendor specific mix tables are specified by a value of
JXFS_C_CDR_MXT_TABLE_BASE + 1..n.

8.10 Mix Algorithm codes

Constant Description Value
JXFS_C_CDR_MXA_NONE No algorithm selected. 6391
JXFS_C_CDR_MXA_MIN_BILLS The minimal number of bills

is used
6044

JXFS_C_CDR_MXA_EQUAL_EMPTY All cash units are equally
emptied.

6045

JXFS_C_CDR_MXA_ALGORITHM_BASE Base constant for vendor
specific mix algorithm.

6392

 Remark:

Vendor specific mix algorithms are specified by a value of
JXFS_C_CDR_MXA_ALGORITHM_BASE + 1..n.

8.11 Retract Area codes

Constant Description Value
JXFS_C_CDR_RA_REJECT Retract to a reject unit. 6511
JXFS_C_CDR_RA_RETRACT Retract to a retract unit. 6512
JXFS_C_CDR_RA_STACKER Retract to intermediate

stacker.
6513

JXFS_C_CDR_RA_TRANSPORT Retract to the transport. 6514

CWA 16008-5:2009 (E)

162

8.12 UVV Delayed Order Queue codes

Constant Description Value
JXFS_C_CDR_DO_ALL All orders in all queues. 6049
JXFS_C_CDR_DO_DELAYED All orders in delay queue. 6047
JXFS_C_CDR_DO_DISPENSABLE Orders ready for processing. 6046
JXFS_C_CDR_DO_LAQ All orders in Large Amount Queue. 6048
JXFS_C_CDR_DO_NONE Order is not in any queue, because of

immediate dispense.
6401

8.13 Cash Tray Status codes

Constant Description Value
JXFS_S_CDR_CT_EMPTY Cashtray is empty 6170
JXFS_S_CDR_CT_NOT_EMPTY Cashtray is not empty 6171
JXFS_S_CDR_CT_NOT_SUPPORTED A cashtray is not supported 6172
JXFS_S_CDR_CT_UNKNOWN Cashtray status unknown 6173

8.14 Device Status codes

Constant Description Value
JXFS_S_CDR_DS_ON_LINE Device is online 6174
JXFS_S_CDR_DS_OFF_LINE Device is offline 6175
JXFS_S_CDR_DS_POWER_OFF Device has poweroff 6176
JXFS_S_CDR_DS_BUSY Device is busy 6177
JXFS_S_CDR_DS_NO_DEVICE No device found 6178
JXFS_S_CDR_DS_USER_ERROR Device reported an user error 6179
JXFS_S_CDR_DS_HARDWARE_ERROR Device reported a hardware

error
6180

8.15 Dispenser Status codes

Constant Description Value
JXFS_S_CDR_DIS_OK All logical cash units are ok. 6181
JXFS_S_CDR_DIS_CU_STATE One of the logical cash units present is in

an abnormal state. The dispenser is
operational, but one or more of the cash
units is in a low, empty or inoperative
condition. Bills can still be dispensed
from at least one of the cash units.

6182

JXFS_S_CDR_DIS_CU_STOP Due to a cash unit failure dispensing is
impossible. The dispenser is operational,
but no bills can be dispensed because all
of the cash units are in an empty or
inoperative condition. This state occurs
when a reject cash unit is full or no reject
cassette is present.

6183

JXFS_S_CDR_DIS_CU_UNKNOWN Due to a hardware error or other
condition, the state of the cash units
cannot be determined.

6184

8.16 Intermediate Stacker Status codes

Constant Description Value
JXFS_S_CDR_IS_EMPTY Stacker is empty 6185
JXFS_S_CDR_IS_NOT_EMPTY Stacker is not empty 6186
JXFS_S_CDR_IS_UNKNOWN Stacker state is unknown 6187
JXFS_S_CDR_IS_NOT_SUPPORTED A stacker is not supported 6188

CWA 16008-5:2009 (E)

163

8.17 Safe Door Status codes

Constant Description Value
JXFS_S_CDR_SD_NOT_SUPPORTED A safedoor is not supported 6193
JXFS_S_CDR_SD_OPEN Safedoor is open 6194
JXFS_S_CDR_SD_CLOSED Safedoor is closed 6195
JXFS_S_CDR_SD_LOCKED Safedoor is locked 6196
JXFS_S_CDR_SD_UNKNOWN Safedoor state is unknown 6197

8.18 Shutter Status codes

Constant Description Value
JXFS_S_CDR_SHT_CLOSED Shutter is closed 6198
JXFS_S_CDR_SHT_OPEN Shutter is open 6199
JXFS_S_CDR_SHT_JAMMED Shutter is malfunctional 6200
JXFS_S_CDR_SHT_NOT_SUPPORTED A shutter is not supported 6201
JXFS_S_CDR_SHT_UNKNOWN Shutter state is unknown 6202

8.19 Transport Status codes

Constant Description Value
JXFS_S_CDR_TP_OK Transport is working 6203
JXFS_S_CDR_TP_INOP Transport is not working 6204
JXFS_S_CDR_TP_NOT_SUPPORTED A transport unit is not

supported
6205

JXFS_S_CDR_TP_UNKNOWN State of transport unit is
unknown

6206

8.20 Vandalism Status codes

Constant Description Value
JXFS_S_CDR_VAN_MANIPULATION A manipulation was detected 6207
JXFS_S_CDR_VAN_NO_MANIPULATION No manipulation was detected 6208
JXFS_S_CDR_VAN_NOT_SUPPORTED A vandalism check is

available
6501

8.21 Present Status codes - deprecated

Constant Description Value
JXFS_S_CDR_PR_UNKNOWN It is unknown if the money could be

accessed by the customer.
6189

JXFS_S_CDR_PR_NOT_PRESENTED The money was not presented. 6190
JXFS_S_CDR_PR_PRESENTED The money was presented. This value

is set as soon as the bills are accessible
by the customer.

6191

JXFS_S_CDR_CASH_TAKEN The cash was taken by the user. 6192

8.22 BIM Status codes

Constant Description Value
INCONSISTENT The stored data sets are inconsistent. 914

8.23 JxfsCashInOrder codes

Constant Description Value
JXFS_C_CDR_NOT_APPLICABLE This value is not applicable in this

context
6521

CWA 16008-5:2009 (E)

164

8.24 Exchange Status codes

Constant Description Value
JXFS_S_CDR_EXC_ACTIVE Exchange state is active. 6531
JXFS_S_CDR_EXC_NOT_ACTIVE Exchange state is not active. 6532
JXFS_S_CDR_EXC_NOT_SUPPORTE
D

Reporting the exchange state is not
supported.

6533

JXFS_S_CDR_EXC_UNKNOWN The current state is not known. 6534

8.25 Acceptor status codes

Constant Description Value
JXFS_S_CDR_ACCEPTOR_OK The acceptor is operational and all cash

units that may be involved for deposit
are in good state.

6541

JXFS_S_CDR_ACCEPTOR_CU_STAT
E

The acceptor is operational, notes can
still be deposited but one or more of
the cash units are not in good state.

6542

JXFS_S_CDR_ACCEPTOR_CU_STOP The acceptor is not operational, no
notes can be deposited.

6543

JXFS_S_CDR_ACCEPTOR_CU_UNK
NOWN

Due to a hardware error or other
condition, the state cannot be
determined.

6544

JXFS_S_CDR_ACCEPTOR_CU_NOTS
UPPORTED

The report of acceptor status is not
supported. This value has sense only if
the deposit capability is true.

6545

A unit is considered to be in ‘good state’ when the thresholdStatus is JXFS_S_BIN_OK,
JXFS_S_BIN_LOW or JXFS_S_BIN_EMPTY, and the status is JXFS_C_CDR_LCU OK or
JXFS_C_CDR_LCU_NOT_DISPENSABLE

8.26 Cash-In Status codes

Value Description Value
JXFS_C_CDR_REFUSED_UNKNOWN

The number of refused banknotes is
unknown.

6551

8.27 Reset Status Codes

Value Description Value
JXFS_C_CDR_RESET_MAXTIME_UNK
NOWN

Unknown Maximum Estimated Time
to perform reset.

-1

CWA 16008-5:2009 (E)

165

9 Device Service Characteristics

9.1 MDU - Minimum Dispense Unit

Each monetary amount is expressed in terms of multiples of “Minimum Dispense Units“
(MDU).

9.1.1 Definitions

Abbreviation Description
MDU Minimum Dispense Unit
CU Currency Unit, defined in ISO 4217
CE Currency Exponent
MAP Money Amount Parameter. Amount of cash expressed

in MDUs.

Currency Unit (CU) for ... Country Code Description
European money EUR 1 Euro
Former Italian money LIT 1 Italian Lira

Currency Exponent (CE) for ... Description MDU equals
European money -2 1 Cent
Former Italian money +2 100 Lire

A MDU is equal to CU times 10 ^ CE.
A MAP relates to the amount of cash like: Amount of cash = MAP * 10 ^ CE.

9.1.2 Example

Europe:

Country code EUR
CU 1 Euro (= 100 Cent)
CE -2
MAP 10050

Amount of cash MAP * 10 ^ CE
€ 100,50 10050 * 10 ^ -2

CWA 16008-5:2009 (E)

166

9.2 Delayed Dispense

9.2.1 Introduction

The delayed dispense concept is based on German security rules (also called “UVV”) which
define the manner in which a cash dispensing device should dispense cash, in order to
minimize losses in the event of bank robbery.

Those security rules define [1]:

• maximum values for total amount of cash allowed to be dispensed within certain time

periods, and
• minimum dispense delay times for amounts which exceed certain values.

The cash dispenser software / hardware used in German financial institutes must conform to
those rules in order to be officially approved for legal usage.

9.2.2 Delayed dispense in J/XFS

J/XFS supports the “UVV” security rules by defining:

• the set of classes, interfaces, properties and constants used for delayed dispense
• the appropriate protocol between the application and the J/XFS device control which

enables the handling of delayed dispense transactions

CWA 16008-5:2009 (E)

167

9.2.3 Delayed dispense protocol

The following sequence diagram presents the communication between the application and the
J/XFS device control defined by the delayed dispense protocol:

The delayed dispense protocol starts by calling the dispense() method of the J/XFS device
control implementing the IJxfsCashDispenserControl interface (1). The dispense request will
be put in the service job queue within the J/XFS device service and an identification number
will be returned to the caller immediately, according to the asynchronous nature of J/XFS
service jobs.

During the execution of the service job the device service checks if the UVV rules allow an
immediate dispense of the requested cash amount. If not, the J/XFS device service creates a
JxfsDispenseOrder object representing the delayed dispense order and stores it internally. See
the description of the JxfsDispenseOrder class for information how to initialize the
JxfsDispenseOrder object properties. The J/XFS device control also sends a
JxfsOperationCompleteEvent object in order to inform the caller that the dispense order has
been delayed (2). The result property of the event is set to the
JXFS_E_CDR_DELAYED_DISPENSE value. The data property contains a copy of the
corresponding JxfsDispenseOrder object.

Application IJxfsCashDispenserControl

1: id1 := dispense()

2: operationCompleteOccured(id1)

3: statusOccured()

4: id2 := dispenseExec()

5: operationCompleteOccured(id2)

JxfsDispenseOrder
created and stored in
device service

UVV delay expired

Cash successfully
dispensed

JxfsDispenseOrder
discarded by device
service

6: statusOccured()
Order removed

CWA 16008-5:2009 (E)

168

When the delay time defined by the UVV rules expires, the device service changes the
queueID property of the JxfsDispenseOrder object to the JXFS_C_CDR_DO_DISPENSABLE
value and sends spontaneously a JxfsStatusEvent object to all registered listeners (3). The
status property of the event is set to the JXFS_S_CDR_DELAYED_ORDER_READY value
and the details property contains a copy of the JxfsDispenseOrder object which has changed.

The application requests an immediate dispense of the previously delayed dispense order by
calling the dispenseExec() method of the device control (4). The dispense request will be sent
to the device service and an identificationID will be returned to the caller immediately.

During the execution the cash is dispensed to the exit slot of the device and a
JxfsOperationCompleteEvent is sent to the caller (5). The result property of the event is set to
the JXFS_RC_SUCCESSFUL value. The data property contains a copy of the
JxfsDispenseOrder object representing the dispense order which was successfully executed.
The device service discards the internally stored JxfsDispenseOrder object and sends a
JxfsStatusEvent with JXFS_S_CDR_DELAYED_ORDER_REMOVED (6) to all registered
listeners.

9.2.4 Re-delaying orders

According to the delayed dispense protocol, the application is responsible for calling the
dispenseExec method explicitly to dispense cash after the delay period has expired. Depending
on the application logic, the application may decide to dispense smaller amounts of money
immediately (using the dispense method) before calling dispenseExec.Those additional
dispenses may cause the device service to re-delay an order which was currently ready for
dispense in order to comply to UVV rules (especially to the rule (a), see Introduction). The
same situation may also happen when two device controls are using the same device service
concurrently.

Re-delaying of orders is also required to prevent attacks by enemy client applications. Such an
application would create many delayed orders using the dispense method. After all delay times
for those orders have expired, the application would try to dispense them as quick as possible
using dispenseExec() method calls. Allowing such scenarios in the device service would
violate UVV security rules.

CWA 16008-5:2009 (E)

169

The following sequence diagram presents the communication between the application and the
J/XFS device control in such a scenario:

The steps (1)-(3) are the same as in the previous chapter.

In the step (4) the application logic decides to postpone handling of the status event (3) and
dispense a smaller amount instead, using the dispense() method. The device service dispenses
this smaller amount and decides to re-delay the order in order to meet the UVV requirements.
The queueID property of the JxfsDispenseOrder object is changed to
JXFS_C_CDR_DO_DELAYED or value (depending on the order kind) and the delay property
is recalculated.

Application IJxfsCashDispenserControl

1: id1 := dispense()

2: operationCompleteOccured(id1)

3: statusOccured()

8: id3 := dispenseExec()

9: operationCompleteOccured(id3)

JxfsDispenseOrder
created and stored in
device service

UVV delay expired

Cash successfully
dispensed

JxfsDispenseOrder
discarded by device
service

4: id2 := dispense()

dispense of a smaller
amount requested

5: statusOccured() order was re-delayed

6: operationCompleteOccured(id2)
dispense of a smaller
amount succeeds

7: statusOccured() order delay expired

10: statusOccured()
Order removed

CWA 16008-5:2009 (E)

170

A JxfsStatusEvent object is sent to all registered listeners (5). The status property of the event
is set to the JXFS_S_CDR_DELAYED_ORDER_CHANGED value and the details property
contains a copy of the JxfsDispenseOrder object which has changed. After the dispensing of
the smaller amount succeeds, a JxfsOperationCompleteEvent object is sent to the calling
application (6). The result property of the event is set to the JXFS_RC_SUCCESSFUL value.
The data property contains a JxfsDispenseOrder object representing the amount which was
successfully dispensed.

The steps (7)-(10) correspond to the steps (3)-(6) in the previous chapter.

9.2.5 Support methods

The IJxfsCashDispenserControl interface provides some support methods for query and
manipulation of dispense orders internally stored by the device service.

The queryOrder method is used retrieve all orders of the given type. The removeOrder method
is used to request the device service to discard a dispense order.

The method getUvv returns true if the order delaying mechanism is currently active, false if it
is not. If inactive, no order delaying will happen, regardless of requested cash amounts and/or
times when the requests are sent. The setUvv method can be used to enable or disable order
delaying mechanism. Disabling the order delaying mechanism is allowed if and only if there
are no dispense orders internally stored in the device service.

For further information about support methods please consult the IJxfsCashDispenserControl
interface specification.

9.2.6 Error handling

The JXFS_E_CDR_ILLEGAL_DISPENSE_ORDER error code can be sent as the result
property of the JxfsOperationCompleteEvent of any operation which requires a
JxfsDispenseOrder object as parameter. It indicates the incorrectness of a JxfsDispenseOrder
parameter. A JxfsDispenseOrder parameter is incorrect if:

• the device service can not find any order with the corresponding orderID property
• the denomination properties of the internal JxfsDispenseOrder object and the

parameter don’t have the same content
• the currency properties of the internal JxfsDispenseOrder object and the parameter

don’t have the same content

The JXFS_E_CDR_DELAYED_DISPENSE error code can be sent as the result property of
the JxfsOperationCompleteEvent of the dispense. It indicates that a dispense order was
delayed. The data property of the event contains a copy of the internally stored
JxfsDispenseOrder object representing the delayed dispense order.

The JXFS_E_CDR_UVV_IN_PROCESS error code can be sent as the result property of the
JxfsOperationCompleteEvent of the dispenseExec and indicates that the requested dispense
order isn’t dispensable yet. The data property of the event contains a copy of the internally
stored JxfsDispenseOrder object representing the delayed dispense order.

The JXFS_E_CDR_UVV_NOT_DISPENSABLE error code can be sent as the result property
of the JxfsOperationCompleteEvent of the dispense and indicates that the requested dispense
order isn’t dispensable due to UVV regulations. The data property of the event contains a copy
of the rejected JxfsDispenseOrder object.

The JXFS_E_ILLEGAL value can be sent as the error code within the JxfsException in the
setUvv method if disabling the order delaying mechanism was requested and there are dispense
orders internally stored in the device service.

CWA 16008-5:2009 (E)

171

9.2.7 State changes of a dispense order during delayed dispense

The following diagram shows state transitions of a delayed dispense order and all events
transmitted during state transitions.

Legend:

Transition Reason Event
1 dispense OC: JXFS_E_CDR_DELAYED_DISPENSE

SE: JXFS_S_CDR_DELAYED_DISPENSE

2 delay expired SE: JXFS_S_CDR_DELAYED_ORDER_CHANGED

3 dispenseExec

completed
OC: JXFS_RC_SUCCESSFUL
SE: JXFS_S_CDR_DELAYED_ORDER_REMOVED

4 redelay SE: JXFS_S_CDR_DELAYED_ORDER_CHANGED

5 removeOrder OC: JXFS_RC_SUCCESSFUL

SE: JXFS_S_CDR_DELAYED_ORDER_REMOVED

6 removeOrder OC: JXFS_RC_SUCCESSFUL

SE: JXFS_S_CDR_DELAYED_ORDER_REMOVED

7 redelay SE: JXFS_S_CDR_DELAYED_ORDER_CHANGED

Delayed Dispensable

Deleted

Dispensed

1

2
3

4

5
6

7

CWA 16008-5:2009 (E)

172

9.2.8 Timing

J/XFS doesn’t define algorithms or strategies for calculating delay times for delayed orders.
The only requirement is that the device service implementation has to calculate those delay
times in such a way that dispensing the cash conforms to currently active UVV security rules.

For example, let us consider 2 different device service implementations: A and B. Let’s
suppose that the application calls the dispense() method three times, with the amounts of
€2500, €2600 and €100 respectively. According to current UVV security rules [1], the second
request should be delayed for at least 30 s after the first one has been fulfilled, so both device
services decide to delay it. But, the device service A dispenses the third request immediately,
where the device service B delays it to be dispensed after the second amount.

Device services A and B are both conform to J/XFS because they implement the delayed
dispense protocol and also ensure that cash dispensing conforms to the UVV security rules.

9.2.9 References
[1] BG-Vorschrift Kassen vom 1. Oktober 1988 in der Fassung vom 1. Januar 1997 mit
Durchführungsanweisungen vom Oktober 1988

CWA 16008-5:2009 (E)

173

9.3 European Article 6 regulations support

9.3.1 Background Information

To accept and / or recycle Euro notes, cash recyclers must comply with the rules of banknotes
acceptance as defined in "RECYCLING OF EURO BANKNOTES : FRAMEWORK FOR
THE DETECTION OF COUNTERFEITS AND FITNESS SORTING BY
CREDITINSTITUTIONS AND OTHER PROFESSIONAL CASH HANDLERS" of January
2005. These rules are generally called "Article 6."
European Article 6 defines 4 categories of notes for customer-operated machines and the rules
how to handle them:

Category Classification Properties Treatment

1 Not a banknote,

not recognised as
euro banknote.

Not detected as a banknote
because of:

• Wrong image or
format;

• Transportation
error. (e.g. double
feeds, etc.);

• Large dog-ears or
missing parts;

• Hand-drafted
banknnotes,
separating cards,
etc.; or

• Non-euro currency.

Return to customer

2 Objects identified
as suspect
counterfeit euro
banknotes

Image and format
recognised, but one or more
authentication features
missing or clearly out of
tolerance.

To be withdrawn from
circulation. To be handed over
for authentication – together
with information on the
account holder – to the
competent national authorities
as soon as possible, in line
with national regulations, at
the latest 20 working days after
deposit in a machine.
Not to be credited to account
holder.

3 Euro banknotes
not clearly
authenticated.

Image and format
recognised, but not all
authentication features
recognised because of quality
and/or tolerance deviations.
In most cases damaged or
soiled banknotes.

The banknotes have to be
processed separately and
transported to the competent
national authorities for
authentication as soon as
possible, in line with national
regulations, at the latest 20
working days after deposit in a
machine.2) The information on
the account holder has to be
stored for eight weeks after the
banknotes have been detected
by the machine. This
information shall be made
available on request.
Alternatively, in agreement
with the competent national
authorities, the information
allowing the traceability of the

CWA 16008-5:2009 (E)

174

account holder can be handed
over together with the category
3 banknotes to the authorities.
May be credited to account
holder.

4a Euro banknotes
identified as
genuine and fit.

All authentication and fitness
checks supported by the
machine delivered positive
results.

Can be used for recycling.
To be credited to account
holder.

4b Euro banknotes
identified as
genuine and unfit.

All authentication checks
supported by the machine
delivered positive results.
Fitness checks supported by
the machine delivered
negative results.

Shall not be used for recycling
and shall be returned to the
NCB.
To be credited to account
holder.

9.3.2 Requirements

A bank note is defined with the following parameters:

• Currency: defines the currency of the note (EUR, USD,…)

• Value: denomination value (1, 10, 20, 50, …)

• Release: release of note (1, 2, ...)

• Category: category of note 2, 3 or 4. Category 1 notes are always returned to the
customer.

For each cashin transaction the following rules should be applied:

 For each cash deposit and for each category of note, the complete set of a bank note
parameters should be returned to the application.

• After cash deposit operations, the number and kind of category 2 and 3

banknotes must be reported to the application, thus enabling it to perform the
corresponding tasks according to the European article 6 regulations.

• For each category 2 and 3 banknote detected by the device, the
corresponding signature information must be reported to the application in
order to enable the application to assign it to the customer who has deposited
it. A signature is a unique identifier for a banknote. It is used together with
the transaction data like an account number (PAN) and transaction number
to identify the customer who has deposited this bank note. The format and
the content of a signature is vendor dependent.

• For cash deposit operations, some kind of “trusted user mode” should be
provided. This mode may be used by a trusted operator (cashier) for note
checking or counting. In this mode the category 2 and category 3 notes will
not be retained but returned and no signature will be generated.

 Additional device capabilities must be provided, enabling applications to query the
device service about its ability to support European article 6 regulations.

CWA 16008-5:2009 (E)

175

9.4 Recycler Rollback Procedure

The following paragraphs and diagrams show the flow of operation for deposit operations used
by cash recycler devices.

9.4.1 Normal operating

An example of an ordinary deposit operation is displayed below:

Application Object DeviceControl: IJxfsCashRecyclerControl

1: cashInStart

2: cashIn Operation Complete.
JxfsCashInOrder
containing the
Accepted Cash (X)

3: cashIn
Operation Complete.
JxfsCashInOrder
containing the
Accepted Cash (Y)

4: cashInEnd
Operation Complete.
JxfsCashInOrder
containing the Total
Accepted Cash
Amount = X + Y

CWA 16008-5:2009 (E)

176

9.4.2 Rollback without errors

Most of the times, the notes inserted by means of consecutive cashIn are stored in the escrow.
When performing the cashInRollback operation, these notes will be ejected and presented to
the customer.

Application Object DeviceControl: IJxfsCashRecyclerControl

1: cashInStart

2: cashIn Operation Complete.
JxfsCashInOrder
containing the
Accepted Cash (X)

3: cashIn
Operation Complete.
JxfsCashInOrder
containing the
Accepted Cash (Y)

4: cashInEnd
Operation Complete.
JxfsCashInOrder
containing the Total
Accepted Cash
Amount = 0

4: cashInRollback
Operation Complete.
JxfsCashInOrder
containing the Total
Returned Cash
Amount = X + Y

CWA 16008-5:2009 (E)

177

9.4.3 Rollback with errors

The fact of performing a rollback and not being returned all the notes might occur. This is not
likely to happen, but in the specific case of the recyclers without an escrow and those where
the rollback process is performed by means of a dispense operation, a dispense error could
occur and thus the customer might be presented a smaller amount of cash.

The manner of operating would be the following:

Application Object DeviceControl: IJxfsCashRecyclerControl

1: cashInStart

2: cashIn Operation Complete.
JxfsCashInOrder
containing the
Accepted Cash (X)

3: cashIn
Operation Complete.
JxfsCashInOrder
containing the
Accepted Cash (Y)

4: cashInEnd
Operation Complete.
JxfsCashInOrder
containing the Total
Accepted Cash
Amount = X + Y - Z

4: cashInRollback
Operation Complete.
JxfsCashInOrder
containing the Total
Returned Cash
Amount = Z

CWA 16008-5:2009 (E)

178

9.4.4 CashIn after rollback

After a rollback operation it is allowed to send more cashIns.

Application Object DeviceControl: IJxfsCashRecyclerControl

1: cashInStart

2: cashIn Operation Complete.
JxfsCashInOrder
containing the
Accepted Cash (X)

3: cashIn
Operation Complete.
JxfsCashInOrder
containing the
Accepted Cash (Y)

7: cashInEnd
Operation Complete.
JxfsCashInOrder
containing the Total
Accepted Cash
Amount = X2 + Y2

4: cashInRollback
Operation Complete.
JxfsCashInOrder
containing the Total
Returned Cash
Amount = X + Y

5: cashIn Operation Complete.
JxfsCashInOrder
containing the
Accepted Cash (X2)

6: cashIn
Operation Complete.
JxfsCashInOrder
containing the
Accepted Cash (Y2)

CWA 16008-5:2009 (E)

179

9.4.5 Conclusion

All deposit operations will be started with a cashInStart and ended with a cashInEnd,
regardless whether a cashInRollback was performed or not.

The application will be in charge of the possible partial rollbacks. This must be checked by
examining the data returned from cashInRollback and cashInEnd.

Although a cashInEnd would not be necessary to be sent when in a cashInRollback operation
all notes are returned, the operation will not be considered finished by the device service until a
cashInEnd is received.

It is possible to send more cashIn transactions after a cashInRollback operation.

It is not allowed to call the dispense method between a cashInStart and a cashInEnd. In this
case, a JxfsOperationCompleteEvent with JXFS_E_CDR_CASH_IN_ACTIVE will be
returned by the dispense method.

CWA 16008-5:2009 (E)

180

9.5 Representation of Physical Escrow

9.5.1 Overview

The current specification regarding cash dispensers and recyclers do not clarify the manner a
cassette of the escrow type has to be defined; therefore an explanation permitting us to
homogenize every manufacturer’s device services, as much as possible, is necessary to be
given.

The main objective is to provide a definition concerning this cassette type as complete as it
might possible be, for us to know the exact status of this cassette type having the most detailed
information available.

Currently different hardware and software implementations of an escrow exist on the market.
Therefore the contents of cassettes of the type escrow cannot be assumed to represent their
cashed-in money of the current transaction, because it is not clear which of the banknotes are
physically present on an escrow and which are merely logically presented. The cash unit does
not give guaranteed information if all category 2, 3 or 4 bank notes will be actually stored on
the escrow and which of these can be rolled back. Therefore a multivendor application should
rely on the cashInInfo property for information about cashed-in money of the current
transaction.

9.5.2 Example Recycler

In order to help us with the explanation, the recycler displayed below will be used in the next
example. This recycler includes the following cassettes:

This recycler’s characteristics are the following:

• A reader for recognition of 10€ variant 1 & 2, 20€, 50€, 100€, 10$, 20$ and 100$ notes

Rollback
ESCROW CASSETTE

(10€, 20€, 50€, 100€, 10$, 20$,100$)

LU10 €

20 €

50 €
100 €
10 $
20$
100$

Input

Output

PU
10€
V1

PU
10€
V2

CWA 16008-5:2009 (E)

181

• An escrow cassette where all the notes belonging to the aforementioned types can be
stored

• A dispense and deposit cassette (recycler) for 10€ notes (variant 1 & 2)
• A dispense and deposit cassette (recycler) for 20€ notes
• A deposit cassette for the remaining denominations

9.5.3 Physical Cassettes

The recycler will include the following physical cassettes

• P1 Escrow Cassette
• P2 Cassette for 10€ notes variant 1
• P3 Cassette for 10€ notes variant 2
• P4 Cassette for 20€ notes
• P5 Cassette for the remaining denominations

9.5.4 Logical Cassettes

The most meaningful fields corresponding to the JxfsLogicalCashUnit class for the different
logical cassettes of this recycler are viewed in the table below:

Number Kind Type *CashType PhysicalUnit
1 NA ESCROW NULL P1
2 NA ESCROW 10€ Var.1 P1
3 NA ESCROW 10€ Var.2 P1
4 NA ESCROW 20€ P1
5 NA ESCROW 50€ P1
6 NA ESCROW 100€ P1
7 NA ESCROW 10$ P1
8 NA ESCROW 20$ P1
9 NA ESCROW 100$ P1
10 RECYCLE BILL 10€ P2 & P3
11 RECYCLE BILL 20€ P4
12 DEPOSIT BILL NULL P5
13 DEPOSIT BILL 50€ P5
14 DEPOSIT BILL 100€ P5
15 DEPOSIT BILL 10$ P5
16 DEPOSIT BILL 20$ P5
17 DEPOSIT BILL 100$ P5

*CashType: Although the structure is more complex, in the table above, the said structure is
summarized to indicate the type of notes each cassette contains.

In this case, it could be known both the total amount of notes contained in the Escrow (by the
Escrow’s counter field) and the detailed amount of each type of notes within the Escrow. The
result of adding the counter fields of the L2..L9 cassettes will be L1’s.

The application will be capable of distinguishing whether a generic Escrow cassette is being
dealt with, by checking if the CashType field is NULL or not. Whether the Escrow cassettes
will be implemented in detail will be decided by the device service’s developer, not being
mandatory. However, the generic cassette will be absolutely necessary to be taken into
consideration, that is to say, the cassette whose CashType field’s value is set to NULL.

The Status field will be the same for all the cassettes of the Escrow type.

CWA 16008-5:2009 (E)

182

Regarding the DEPOSIT cassettes (L12..L17), the generic one (L12) should be optional since
the exact amount of notes within the recycler is necessary to be known. The same goes for the
Escrow, when the CashType field is set to NULL, indicating that the cassette type is generic.

9.6 Handling of null parameters

If null is passed as a method parameter or contained within a parameter class, a JxfsException
exception with the errorCode property set to JXFS_E_PARAMETER_INVALID will be
thrown, unless the handling of a null parameter is explicitly specified for a particular method.

9.7 Handling of null return values

A value null returned as result of a method call or contained within a parameter class, is not
allowed, unless explicitly specified for a particular reason.

9.8 Multiple Currency Cash-In operations

If the device shall process more than one currency in a cashIn operation, this requires some
additional definitions as the JxfsCashInOrder class is limited to one currency (see amount and
currency properties). Another requirement is that the device service supports that feature what
can be checked via JxfsCapabilities.multipleCurrenciesCashInSupported.

To be able to accept more than one currency in a cashIn operation, the following preconditions
have to be met:

As usual the acceptable currencies are defined with updateDenominations. Devices without
banknote validator will not be used.

The properties of the JxfsCashInOrder parameter must be set as follows by the application:

currency.currencyCode.currencyCode = "*";
currency.exponent = 0;
denomination.amount = JXFS_C_CDR_NOT_APPLICABLE;

If items of more than one currency have been accepted by a cashIn operation, then the resulting
JxfsCashInOrder / JxfsArt6CashInOrder object must be set up as follows:

currency.currencyCode.currencyCode = "*";
currency.exponent = 0;
denomination.amount = JXFS_C_CDR_NOT_APPLICABLE;

The following applies to JxfsArt6CashInOrder only:

category2.amount= JXFS_C_CDR_NOT_APPLICABLE;
category3.amount= JXFS_C_CDR_NOT_APPLICABLE;
category4.amount= JXFS_C_CDR_NOT_APPLICABLE;

If the application wants to know what money has been accepted, it must either

- parse JxfsCashInOrder.denomination.items and get the denomination from the unit numbers
plus the general currency exponent or

- analyse the cashInInfo property.

CWA 16008-5:2009 (E)

183

9.9 Position Mechanical Design Notes

Supported mechanical designs for positions on a dispenser/acceptor/recycler device.

Value Description
JxfsCDRMechDesignEnum.slot

JxfsCDRMechDesignEnum.tray

Depending on the position mechanical design, explicit shutter handling has to be performed in the following
ways:

• Slot during output operation:

1) Call shutterMove(true,…) to open the slot. This method also moves items to a position accessible to the
customer if required.

2) Wait for the customer to take the items or timeout. Cash taken from the position is detected because the
contents state changes to empty.

3) Anyway call shutterMove (false,…) to ensure the slot is closed (even if the shutter has been closed
automatically in some conditions). If there were items, this operation would move them back to allow
the shutter to be closed.

4) Check the final slot status.

• Slot during input operation:

1) Call shutterMove (true,…) to open the slot.
2) Call cashIn method right after the shutter opened to start cash acceptance.
3) Anyway call shutterMove (false,…) to ensure the slot is closed.
4) Check the final slot status.

• Tray during output operation:
1) Call shutterMove (true,…) to open the tray.
2) Wait for the customer to take the items or timeout. Cash taken from the position is detected because the

contents state changes to empty.
3) Ask customer confirmation to continue (using the screen).
4) Call shutterMove (false,…) to close the tray.
5) Check the final tray status.

• Tray during input operation:

1) Call shutterMove(true,…) to open the tray
2) Wait for the customer to insert the items or timeout. Cash inserted is detected because the contents state

changes to not empty.
3) Ask customer confirmation to continue (using the screen).
4) Call shutterMove(false,…) to closed the tray.
5) Check the tray status to ensure the device is ready for cash-in.
6) Call cashIn.

CWA 16008-5:2009 (E)

184

9.10 Shutter Handling sequence diagrams

The following diagrams depict the way to handle the shutterMove (and present) jobs and how
JxfsCDRPositionStatus should change through the shutter handling operation.

9.10.1 Implicit Shutter Handling

In this case customer takes money after it has been successfully presented in the output position, controlled
implicitely:

sd Implicit Shutter Handling

Customer

Application Device Service

present() :int

JXFS_S_CDR_POSITION_CHANGED()
JxfsShutterStatus is Open
JxfsContentsStatus is NotEmpty

JOCE: present()

User Takes Money()

JXFS_S_CDR_POSITION_CHANGED()
JxfsShutterStatus is Closed
JxfsContentsStatus is Empty

JXFS_S_CDR_CASH_TAKEN()

CWA 16008-5:2009 (E)

185

9.10.2 Explicit Shutter Handling

In this case customer takes money after it has been succesfully presented in the output position, controlled
explicitely:

sd Explicit Shutter Handling

Customer

Application Device Service

shutterMove(true,POS) :int

JXFS_S_CDR_POSITION_CHANGED()
JxfsShutterStatus is Open
JxfsContentsStatus is NotEmpty

JOCE: shutterMove()

Customer Takes Money()

JXFS_S_CDR_POSITION_CHANGED()
JxfsShutterStatus is Open
JxfsContentsStatus is Empty

shutterMove(false,POS) :int

JXFS_S_CDR_POSITION_CHANGED()
JxfsShutterStatus is Closed
JxfsContentsStatus is Empty

JXFS_S_CDR_CASH_TAKEN()

9.10.3 Explicit Shutter Handling, Notes reinserted and never taken

In this case after the notes have been presented for the first time, user takes them, and while position is being
closed they are reinserted into it. Then, customer goes and application time out expires, so it proceeds to retract
them.

CWA 16008-5:2009 (E)

186

sd Explicit, Notes reinserted

Customer

Application Device Service

shutterMove(true,POS) :int

JXFS_S_CDR_POSITION_CHANGED()
JxfsShutterStatus is Open
JxfsContentsStatus is NotEmpty

JOCE: shutterMove()

Customer Takes Money()

JXFS_S_CDR_POSITION_CHANGED()
JxfsShutterStatus is Open
JxfsContentsStatus is Empty

shutterMove(false,POS) :int

Customer Reinserts Anything()

JXFS_S_CDR_POSITION_CHANGED()
JxfsShutterStatus is Closed
JxfsContentsStatus is NotEmpty

shutterMove(true,POS) :int

JXFS_S_CDR_POSITION_CHANGED()
JxfsShutterStatus is Open
JxfsContentsStatus is NotEmpty

JOCE: shutterMove()

shutterMove(false,POS) :int
Application Time Out expires

JXFS_S_CDR_POSITION_CHANGED()
JxfsShutterStatus is Closed
JxfsContentsStatus is NotEmpty

JOCE: shutterMove()

retract() :int

JXFS_S_CDR_POSITION_CHANGED()
JxfsShutterStatus is Closed.
JxfsContentsStatus is Empty.

JOCE: retract()

CWA 16008-5:2009 (E)

187

9.10.4 Explicit Shutter Handling, Notes taken in second presentation

In this case after the notes have been presented for the first time, customer takes them, and while position is
being closed they are reinserted into it. Then, customer takes them and goes away.

sd Explicit, Notes taken 2nd time

Customer

Application Device Service

shutterMove(true,POS) :int

JXFS_S_CDR_POSITION_CHANGED()
JxfsShutterStatus is Open
JxfsContentsStatus is NotEmpty

JOCE: shutterMove()

Customer Takes Money()

JXFS_S_CDR_POSITION_CHANGED()
JxfsShutterStatus is Open
JxfsContentsStatus is Empty

shutterMove(false,POS) :int

Customer Reinserts Anything()

JXFS_S_CDR_POSITION_CHANGED()
JxfsShutterStatus is Close
JxfsContentsStatus is NotEmpty

JOCE: shutterMove()

shutterMove(true,POS) :int

JXFS_S_CDR_POSITION_CHANGED()
JxfsShutterStatus is Open
JxfsContentsStatus is NotEmpty

JOCE: shutterMove()

Customer Takes Money()

JXFS_S_CDR_POSITION_CHANGED()
JxfsShutterStatus is Open
JxfsContentsStatus is Empty

shutterMove(false,POS) :int

JXFS_S_CDR_POSITION_CHANGED()
JxfsShutterStatus is Close
JxfsContentsStatus is Empty

JOCE: shutterMove()

JXFS_S_CDR_CASH_TAKEN()

CWA 16008-5:2009 (E)

188

9.10.5 Explicit Shutter Handling, Handling of two bunches

Some devices may not be able to present the complete position contents by a single shutter open action. if
additional bunches need to be presented just after the first bunch presentation has been retrieved by customer
(JXFS_S_CDR_CASH_TAKEN event), the device service should ensure that the position status is changed
again to a NotEmpty state so application is able to check the position status and reopen the shutter.

sd Explicit, 2 Bunches

Customer

Application Device Service

shutterMove(true, POS) :int

JXFS_S_CDR_POSITION_CHANGED()
JxfsShutterStatus is Open
JxfsContentsStatus is NotEmpty

JOCE: shutterMove()

Customer Takes Money()

JXFS_S_CDR_POSITION_CHANGED()
JxfsShutterStatus is Open
JxfsContentsStatus is Empty

shutterMove(false, POS) :int

JXFS_S_CDR_POSITION_CHANGED()
JxfsShutterStatus is Closed
JxfsContentsStatus is Empty

JXFS_S_CDR_CASH_TAKEN()

JXFS_S_CDR_POSITION_CHANGED()
JxfsShutterStatus is Closed
JxfsContentsStatus is NotEmpty.

getStatus()

JxfsCdrStatus()
Application realizes another bunch should
be presented.

shutterMove(true, POS) :int

JXFS_S_CDR_POSITION_CHANGED()
JxfsShutterStatus is Open
JxfsContentsStatus is NotEmpty

JOCE: shutterMove()

Customer Takes Money()

JXFS_S_CDR_POSITION_CHANGED()
JxfsShutterStatus is Open
JxfsContentsStatus is Empty

shutterMove(false, POS)

JXFS_S_CDR_POSITION_CHANGED()
JxfsShutterStatus is Closed
JxfsContentsStatus is Empty

JOCE: shutterMove()

JXFS_S_CDR_CASH_TAKEN()

